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Abstract

Recent years have witnessed the remarkable success of large language models
(LLMs) in various natural language processing (NLP) tasks. As the size of LLMs
increases, the resources required to train these models have skyrocketed, making it
increasingly impractical to re-train LLMs for every sub-task. Consequently, fine-
tuning pre-trained LLMs on downstream datasets in a cost-effective manner has
become a critical area of research. Parameter-efficient fine-tuning (PEFT) methods
aim to reduce the memory usage/running time required to finetune language models,
while preserving performance. In this project, we explore the capabilities and
limitations of two widely-used PEFT methods: Low-Rank Adaptation (LoRA) [1]
and its recent variant, Weight-Decomposed Low-Rank Adaptation (DoRA) [2],
on three downstream tasks including sentiment analysis, paraphrase detection and
semantic textual similarity.
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2 Introduction

The exponential growth and success of large language models (LLMs) in natural language processing
(NLP) tasks have been nothing short of revolutionary. Models like BERT [3], GPT-3 [4], and their
derivatives have set new benchmarks across a range of applications including machine translation,
sentiment analysis, question answering, and more. The key to their success lies in their ability to
capture intricate patterns and nuances in vast amounts of text data, leading to highly accurate and
contextually aware outputs. However, this success comes at a substantial cost.

As the size and complexity of LLMs have increased, the computational resources required to train
and fine-tune them also increased by a large margin. This includes significant memory consumption,
prolonged training times, and the necessity for high-end hardware, which can be prohibitively
expensive. Consequently, it has become increasingly impractical to re-train LLMs for every new
sub-task, posing a major challenge for both researchers and practitioners.

Parameter-efficient fine-tuning (PEFT) methods have emerged as a promising solution to these issues.
PEFT techniques aim to fine-tune only a subset of the model parameters or introduce additional
trainable parameters, thereby reducing the computational burden while maintaining or enhancing
model performance. This approach not only democratizes the fine-tuning process, making it accessible
to a broader audience, but also facilitates rapid adaptation of pre-trained models to diverse applications
without extensive retraining.

In this paper, we delve into two prominent PEFT methods: Low-Rank Adaptation (LoRA) [1] and its
recent variant, Weight-Decomposed Low-Rank Adaptation (DoRA) [2]. LoRA reduces the number
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of trainable parameters by decomposing the weight matrices into lower-dimensional forms, achieving
parameter efficiency. While LoRA is lightweight and effective, it can fail to outperform finetuning
the full model. To improve this, DoRA builds upon this concept by further decomposing the weight
matrices to enhance model’s performance while adding little runtime overhead.

We assess the effectiveness of these methods across three critical NLP tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. Sentiment analysis involves determining the
sentiment polarity of a given text, which has applications in areas like social media monitoring and
customer feedback analysis. Paraphrase detection focuses on identifying whether two sentences
convey the same meaning, which is essential for tasks such as plagiarism detection and question
answering. Semantic textual similarity measures the degree of semantic equivalence between two
texts, which is crucial for information retrieval and text summarization.

Current methods for fine-tuning LLMs, while effective, often fail to balance performance with
efficiency. Traditional fine-tuning approaches require retraining large portions of the model, leading
to high resource consumption. LoRA and DoRA present a viable alternative, promising substantial
reductions in resource requirements without compromising on performance. Through our experiments,
we aim to provide a comprehensive evaluation of LoRA and DoRA, highlighting their strengths and
limitations.

3 Related Work

3.1 Transformer-Based Model

The Transformer model [5] revolutionized natural language processing (NLP) by leveraging self-
attention mechanisms to process input sequences in parallel, rather than sequentially as in traditional
recurrent neural networks. This architectural innovation enabled the modeling of long-range de-
pendencies more effectively and efficiently, significantly improving performance on various NLP
tasks.

Building upon the Transformer architecture, BERT (Bidirectional Encoder Representations from
Transformers) [3] further advanced the field by introducing a bidirectional training approach. Unlike
unidirectional models such as GPT [6], BERT processes text from both directions, capturing deeper
and more nuanced contextual information. BERT’s pre-training involves two objectives: Masked
Language Modeling (MLM), where random words in a sentence are masked and the model learns to
predict them, and Next Sentence Prediction (NSP), which helps the model understand the relationship
between paired sentences. BERT’s introduction marked a significant milestone in NLP, achieving
state-of-the-art performance on a wide array of benchmarks at the time. Its success demonstrated the
effectiveness of bidirectional pre-training in capturing complex language patterns and understanding
context.

Following the success of BERT, several enhancements and variations have been proposed to further
improve the performance and efficiency of Transformer-based models. RoBERTa [7] optimized
BERT by removing the NSP objective, training on more data for longer periods, and using larger batch
sizes, leading to improvements in several NLP tasks. SpanBERT [8] enhances BERT by focusing on
predicting contiguous spans of text rather than individual tokens, which improves model’s ability to
capture and understand longer-term dependencies and relationships within the text.

Moreover, the GPT series [6, 9, 4] explored autoregressive training, where the model predicts the next
word in a sequence, demonstrating impressive capabilities in generating coherent and contextually
relevant text. GPT-3 [4], in particular, with 175 billion parameters, showcased the power of scaling up
model size, achieving remarkable performance across diverse NLP tasks with few-shot or zero-shot
learning.

These advancements underscore the rapid evolution of Transformer-based models and their significant
impact on NLP. While BERT and its derivatives have set new performance standards, the increasing
computational demands associated with training and fine-tuning such large models have prompted
ongoing research into more efficient methodologies.
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3.2 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods have been developed to address the significant
computational and memory challenges associated with fine-tuning LLMs. Traditional fine-tuning
involves updating a vast number of parameters, which can be resource-intensive and impractical
for many applications. PEFT techniques aim to mitigate these challenges by reducing the number
of trainable parameters, thereby decreasing the required computational resources and making the
fine-tuning process more accessible and efficient.

One prominent PEFT method is Low-Rank Adaptation (LoRA) [1]. LoRA reduces the number
of trainable parameters by decomposing the weight matrices of the model into lower-dimensional
forms. Specifically, it introduces additional trainable matrices that are of lower rank, which are then
combined with the original weight matrices during fine-tuning. This decomposition allows the model
to retain most of its expressive power while significantly reducing the number of parameters that need
to be updated. LoRA has demonstrated substantial efficiency gains, making it possible to fine-tune
large models on resource-constrained hardware without a significant loss in performance.

Building on the principles of LoRA, Weight-Decomposed Low-Rank Adaptation (DoRA) [2] further
enhances the fine-tuning process by improving the efficiency of parameter updates. DoRA focuses
on decomposing the weight matrices to better handle the magnitude and direction of updates, which
leads to more effective fine-tuning. This method allows for more precise updates, enhancing the
overall performance of the model on downstream tasks without introducing additional computational
costs.

PEFT methods, such as LoRA and DoRA, offer a compelling alternative to traditional fine-tuning
approaches by balancing performance with efficiency. They enable the rapid adaptation of pre-trained
models to specific tasks with significantly reduced resource requirements. As research in this area
continues to evolve, further advancements and optimizations in PEFT methods are expected, paving
the way for more sustainable and accessible fine-tuning of large language models.

4 Approach

4.1 Base Model

The base model we used for various fine-tuning experiments is the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) [3], a transformer-based model known for generating rich
contextual word representations. Specifically, we implemented the minBERT model as specified in
the default final project handout. MinBERT retains the core architecture of BERT but is optimized for
the scope of our experiments. For a detailed description of its structure, refer to the project handout.

To effectively handle the three downstream tasks—sentiment analysis, paraphrase detection, and
semantic textual similarity—concurrently, we attach three different linear layers after the [CLS] token
of minBERT’s output. These layers are tailored to the specific requirements of each task:

• Sentiment Analysis: The [CLS] token’s representation is first passed through a dropout
layer with a probability of 0.3 to prevent overfitting. Subsequently, it is fed into a linear
layer with dimensions HIDDEN SIZE × NUM CLASSES, which outputs the final logits for
sentiment classification.

• Paraphrase Detection: Both sentences in a pair are processed independently by minBERT
to obtain their respective [CLS] token representations, denoted as [CLS1] and [CLS2].
These tokens are then concatenated and passed through a linear layer with dimensions
2 HIDDEN SIZE × 1 to produce a single output logit, indicating whether the sentences are
paraphrases.

• Semantic Textual Similarity: The pipeline for this task mirrors that of paraphrase detection.
The [CLS] tokens from both sentences are concatenated and processed by a linear layer to
produce a similarity score.

3



4.2 LoRA

Low-Rank Adaptation (LoRA) is a technique designed to reduce the memory usage and computational
time required during fine-tuning while preserving model performance. The underlying hypothesis
is that the changes needed to adapt a pre-trained model to a new task exhibit a low "intrinsic rank."
For a pre-trained weight matrix W0 ∈ Rd×k, LoRA models the weight update ∆W ∈ Rd×k during
fine-tuning as the product of two low-rank matrices A ∈ Rd×r and B ∈ Rr×k, where r ≪ min(d, k).
The final weight matrix is parameterized as W0 +BA.

During fine-tuning, the original weight matrix W0 is frozen, and only the low-rank matrices A and B,
along with the final linear layers, are updated. This approach significantly reduces the number of
parameters that need to be trained, thereby lowering the computational and memory requirements.
The effectiveness of LoRA in various NLP tasks demonstrates its potential for efficient model
adaptation without sacrificing accuracy.

As for implementation-level details, we replace linear layers that compute query, key and value in
self-attention projections, dense linear layer after self-attention projections, and dense linear layers in
intermediate and output projections in feed-forward network with LoRA layers of specific rank.

4.3 DoRA

While LoRA offers significant benefits in terms of efficiency, it may sometimes underperform
compared to standard fine-tuning. To address this, Weight-Decomposed Low-Rank Adaptation
(DoRA) proposes a refined approach that decomposes the magnitude and direction of weight updates
to enhance fine-tuning performance without additional computational costs.

DoRA formulates the pre-trained weight matrix W in a manner that separates the magnitude and
direction components. Specifically, the weight matrix W is expressed as:

W = m
V

∥V ∥c
= ∥W∥c

V

∥V ∥c

where m ∈ R1×k is a learnable magnitude vector, V ∈ Rd×k is a directional matrix, and ∥ · ∥c
represents the vector-wise norm across each column. LoRA is applied to the directional component
V .

To further enhance efficiency, the normalization factor 1
∥V ∥c

is treated as a constant during back-
propagation. This simplification reduces computational overhead while having minimal impact on
performance. The fine-tuning process for DoRA mirrors that of LoRA, involving the freezing of the
pre-trained weights and updating only the low-rank components and the final linear layers.

Similar to implementation details of LoRA, we replace the linear layers in self-attention module and
bert layer with DoRA layers of specific rank.

5 Experiments

5.1 Data

For our experiments, we utilized three distinct datasets tailored to the specific requirements of each
downstream task: sentiment analysis, paraphrase detection, and semantic textual similarity.

• Sentiment Analysis: For fine-tuning the sentiment analysis task, we used the Stanford Sen-
timent Treebank (SST) datasets. SST provides fine-grained sentiment labels for sentences,
making it an ideal choice for training models to understand nuanced sentiments. The dataset
consists of both binary and fine-grained labels, allowing us to evaluate the performance of
our models on a comprehensive sentiment classification task.

• Paraphrase Detection: For the task of paraphrase detection, we employed the Quora
Question Pairs dataset. This dataset contains pairs of questions from the Quora platform,
labeled to indicate whether the questions are paraphrases of each other. The dataset is
extensive and covers a wide range of topics, making it suitable for training models to identify
semantic similarity and redundancy in natural language queries.
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• Semantic Textual Similarity: To evaluate semantic textual similarity, we used the SemEval
STS Benchmark Dataset. This dataset comprises sentence pairs annotated with similarity
scores ranging from 0 to 5, where 0 indicates no semantic similarity and 5 indicates
complete semantic equivalence. The STS Benchmark is a standard dataset for assessing
the capability of models to capture semantic meaning and quantify the similarity between
textual expressions.

Each dataset was pre-processed to ensure compatibility with the input requirements of the minBERT
model. These datasets provided a diverse set of challenges for our fine-tuning experiments, allowing
us to thoroughly evaluate the performance and efficiency of the LoRA and DoRA methods across
different NLP tasks.

5.2 Evaluation method

For evaluating the performance of our models across the three downstream tasks, we employed
different metrics tailored to the specific nature of each task:

• Sentiment Analysis and Paraphrase Detection: For these classification tasks, the primary
evaluation metric is classification accuracy. Classification accuracy measures the proportion
of correctly predicted instances among the total instances. It provides a straightforward and
intuitive measure of performance, allowing us to gauge how well the model distinguishes
between different classes. Higher accuracy indicates better model performance in correctly
identifying sentiment polarity and detecting paraphrases.

• Semantic Textual Similarity: For this regression task, we used the Pearson correlation
coefficient as the evaluation metric. The Pearson correlation coefficient measures the linear
correlation between the ground truth similarity scores and the predicted similarity scores,
ranging from -1 to 1. A coefficient of 1 indicates a perfect positive linear relationship, 0
indicates no linear relationship, and -1 indicates a perfect negative linear relationship. This
metric is particularly suitable for semantic textual similarity tasks as it quantifies how well
the predicted scores align with the actual semantic relationships between sentence pairs.

These evaluation metrics were chosen for their relevance and effectiveness in capturing the perfor-
mance of models in their respective tasks. By using classification accuracy for sentiment analysis
and paraphrase detection, and the Pearson correlation coefficient for semantic textual similarity, we
ensure a comprehensive assessment of the model’s capabilities across diverse NLP challenges.

Besides, we keep track of the training time and GPU memory usage of each run to compare runtime
performance of the different methods.

5.3 Experimental Details

The training experiments were conducted on a single RTX 3060 GPU. Our experiments consisted of
four parts: fine-tuning the last linear layers, fine-tuning the full model, fine-tuning with LoRA layers,
and fine-tuning with DoRA layers. For all four experiments, we used a batch size of 16.

1. Fine-Tuning Last Linear Layers: In this setup, all layers except the last three linear layers
for the three downstream tasks were frozen. We used a learning rate of 1× 10−3 for this
experiment.

2. Fine-Tuning Full Model: Here, gradients were allowed to backpropagate through all layers
of the model. The learning rate was set to 1× 10−5.

3. Fine-Tuning with LoRA Layers: For LoRA, we chose a rank of 8 and a learning rate of
1× 10−5. All layers except the LoRA layers and the last three linear layers were frozen.

4. Fine-Tuning with DoRA Layers: Similarly, for DoRA, we used a rank of 8 and a learning
rate of 1× 10−5. All layers except the DoRA layers and the last three linear layers were
frozen.

To accommodate the three subtasks concurrently, for every gradient update, a batch was taken from
each of the three datasets, and all batches were forward-passed through the model. Each batch size
was 16. The length of an epoch was defined by the longest dataset among the three. The other
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two shorter datasets were wrapped around to ensure they did not run out during an epoch. All four
methods were trained for one epoch.

The decision to train for only one epoch was based on two observations:

• Post one epoch, the improvements were minimal, and there were signs of overfitting.

• The primary focus of this project was to study the performance-efficiency trade-off rather
than solely enhancing performance. Therefore, the comparison of different methods under
similar settings was emphasized.

5.4 Results

Table 1: Performance and Efficiency Metrics for Different Fine-Tuning Methods

Method SA Acc PD Acc STS Corr Memory Usage Training Time
Last Linear 0.395 0.610 0.312 ∼750 MB ∼30 min
Full Model 0.494 0.769 0.370 ∼4100 MB ∼100 min
LoRA 0.307 0.632 0.239 ∼800 MB ∼30 min
DoRA 0.320 0.632 0.235 ∼950 MB ∼30 min

Table 1 contains the results of the experiment. The evaluation metrics are computed on the validation
set. SA Acc refers to accuracy of sentiment analysis. PD Acc refers to accuracy of paraphrase
detection. STS Corr refers to the correlation coefficient of semantic textual similarity. Memory usage
and training time are recorded on a single RTX 3060 GPU.

6 Analysis

6.1 Fine-tuning Last Linear Layers vs. Fine-tuning Full Model

There is a significant overall improvement when transitioning from fine-tuning only the last linear
layers to fine-tuning the full model. This result is intuitive: when only the last three linear layers are
fine-tuned, the model is limited in its ability to extract and leverage common information across the
three tasks. Each task is treated somewhat in isolation, preventing the model from effectively sharing
learned representations.

In contrast, fine-tuning the full model allows gradients to propagate through all layers, enabling
the model to transfer learned knowledge from one subtask to another. This holistic approach
facilitates better integration and utilization of shared patterns and features, thereby enhancing overall
performance across all tasks. The improvement observed underscores the importance of leveraging
the entire model’s capacity for fine-tuning, as it maximizes the benefits of transfer learning and shared
representations.

However, as a trade-off, fine-tuning the full model requires significantly more GPU memory and
training time. Even with our minBERT implementation, this approach incurs considerable overhead.
In the context of large language models (LLMs), fine-tuning the full model might become infeasible
due to these substantial resource demands.

6.2 PEFT

Comparing fine-tuning with LoRA to fine-tuning just the last linear layers or the full model, we
observe that the performance of LoRA is slightly worse than fine-tuning the last linear layers only.
However, it is important to note that this comparison may not be entirely fair. By replacing the
linear layers in the self-attention module and BERT layers with LoRA layers, we lose the pre-trained
information of the original layers. Consequently, these layers are reinitialized and trained from
scratch, which can impact performance. Other potential reasons for the performance drop include
the restricted representation power of the model due to the low-rank approximation of LoRA layers.
Despite this, LoRA appears to be functioning correctly, as the loss continued to converge during
training. Overall, it is reasonable to conclude that LoRA can still achieve relatively good performance,
as evidenced by its superior paraphrase detection accuracy compared to fine-tuning only the last
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linear layers. Additionally, adding LoRA to the model results in nearly identical runtime performance
and GPU memory usage as fine-tuning the last linear layers, demonstrating LoRA’s efficiency.

Switching from LoRA to DoRA provides a slight performance enhancement, with a 0.13 increase
in sentiment analysis accuracy and a 0.04 decrease in semantic textual similarity correlation. The
improvement is not very pronounced in our case, which may be due to the lack of pre-trained
information and the fact that our fine-tuning datasets alone may not be sufficient to fully distinguish
between the effectiveness of LoRA and DoRA. Nevertheless, the observed enhancement exists
without any specific hyperparameter tuning compared to LoRA. It is noteworthy that changing from
LoRA to DoRA incurs almost no runtime overhead and only a minimal increase in GPU memory
usage. Thus, it is reasonable to conclude that replacing LoRA with DoRA can be beneficial, providing
at least equivalent performance with minimal additional overhead.

6.3 Ablation Study on Rank

Table 2: Ablation Study on Rank of LoRA and DoRA

Method SA Acc PD Acc STS Corr
LoRA (rank 8) 0.307 0.632 0.239
LoRA (rank 32) 0.311 0.632 0.237
DoRA (rank 8) 0.320 0.632 0.235
DoRA (rank 32) 0.322 0.632 0.230

Table 2 provides an ablation analysis on the rank of LoRA and DoRA. The results show that increasing
the rank from 8 to 32 leads to minor changes in performance metrics for both LoRA and DoRA. For
sentiment analysis, there is a slight improvement in accuracy with a higher rank for both methods.
However, for paraphrase detection, the accuracy remains constant regardless of the rank, indicating
that this task is less sensitive to changes in the rank of the low-rank matrices. For semantic textual
similarity, a slight decrease in correlation is observed with a higher rank, suggesting a marginal
trade-off in performance.

Overall, the analysis indicates that using a lower rank (such as 8) might be preferable for achieving
better efficiency without substantial loss in performance, as the differences in performance metrics
between ranks 8 and 32 are minimal.

7 Conclusion

In this paper, we explored the efficiency and performance trade-offs associated with various fine-
tuning methods for large language models (LLMs), using minBERT as our base model. Our ex-
periments compared the effectiveness of fine-tuning only the last linear layers, the full model, and
incorporating Parameter-Efficient Fine-Tuning (PEFT) techniques such as LoRA and DoRA.

Fine-tuning the full model demonstrated significant performance improvements over fine-tuning just
the last linear layers, highlighting the benefits of leveraging the entire model’s capacity. However,
this approach also incurred substantial increases in GPU memory usage and training time, which may
render it infeasible for larger models in resource-constrained environments.

LoRA, designed to reduce memory and computational requirements by introducing low-rank adap-
tations, showed promising results in terms of efficiency. While its performance was slightly lower
than that of fine-tuning the last linear layers, this can be attributed to the reinitialization of layers and
the loss of pre-trained information. Despite these challenges, LoRA maintained efficient memory
usage and training times comparable to fine-tuning the last linear layers, validating its potential as a
resource-efficient fine-tuning method.

Transitioning from LoRA to DoRA provided a modest performance enhancement with minimal
additional overhead. This indicates that DoRA can be a viable alternative to LoRA, offering slight
improvements without significant increases in resource consumption.

In summary, our study underscores the importance of balancing performance and efficiency in fine-
tuning LLMs. While full model fine-tuning delivers the best performance, PEFT methods like LoRA
and DoRA present viable options for achieving competitive results with lower resource demands.
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Future work could focus on optimizing these techniques further, exploring more sophisticated
initialization strategies, and extending their application to other models and tasks.

8 Ethics Statement

In the rising era of AI, it is crucial to consider the ethical implications of new AI techniques. In the
context of this project, which focuses on fine-tuning large language models (LLMs) at a lower cost,
a potential risk is that it could enable individuals to imitate others’ writing styles, raising ethical
concerns. This issue is not unique to our project; it is a broader challenge associated with many
LLMs. The ability to generate text that closely mimics human writing can be misused for purposes
such as plagiarism, misinformation, and identity theft.

Additionally, the democratization of fine-tuning techniques might lead to the widespread creation
and dissemination of harmful content, including biased, offensive, or misleading information. As
researchers and practitioners, it is our responsibility to develop safeguards and guidelines to mitigate
these risks. Studies on how to distinguish text written by humans from that generated by LLMs are
essential and ongoing. Furthermore, transparency in the deployment of AI-generated content and
adherence to ethical standards in AI research and application are paramount to ensure the responsible
use of these powerful technologies.
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