Words and Wins: Enhancing Game Play with LLM
Fine-Tuning by RL

Stanford CS224N Custom Project

Xuanzi Chen Zhengjia Huang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
xuanzic@stanford.edu fredhzj@stanford.edu
Abstract

Traditionally, Al agents in game are dominated using reinforcement learning. With
the enhancement of various large language models (LLMs), a new paradigm is
being explored where these models could act as Al agents directly, or enhanced
with reinforcement learning in gaming contexts. Our project aims to continue
exploring LLM’s game play performance in complex, dynamic simulated game
setting, such as in the popular action video game "Street Fighter II", by leveraging
state-of-the-art accessible text-only LLMs like Mistral 7B or multimodal LLM
such as LLaVA. We mainly want to discuss two questions: 1) whether LLMs can
not only encode instructions but also be directly used as agent policies choosing
actions given the observation, and 2) whether LLMs can boost RL tasks through
pre-trained knowledge inherited from the text it learned.

1 Key Information to include

* Mentor: Ryan Li

* Team Contributions: Xuanzi Chen handled the baseline implementation, conducted literature
review, experimented Mistral training with PPO, and tuned the RGB observer, action
mapping and prompt template. Zhengjia Huang implemented the PPO fine-tuning code,
developed the multi-modal related functions, wrote the online training dataset wrapper,
trained LLaVA, experimented with GPT2, and did some literature review.

2 Introduction

State B
(TextORImg) [| e i t Observer | |
" ' TR Esmuun\:
Task (Text) i oo i
|, ® N Resp
i i onse
Action Space 1| LLM Agent | : ‘
(Text) 5 i Environment
Prompt : Reward Layer I m Reward

Video games provide a dynamic and challenging environment for developing and testing Al agents’
capabilities. Historically, reinforcement learning (RL) has been a golden methodology in this area,

Stanford CS224N Natural Language Processing with Deep Learning

powering agents that can master games from simple Atari challenges to complex multi-player strategy
game environment. However, RL agents often require massive amount of training time and game play
data, and may struggle with trained agents adapting to newer environment as well as when reward is
sparse.

The advent of large language models (LLMs) like GPT-40 (1)) introduces potential for a paradigm
shift. These models being trained on diverse media data across audio, video and vision, encompassing
a broad range of human knowledge, can generate contextually accurate responses and perform
surprisingly well for interactive tasks. Other multimodal model such as LLaVA (2), can process both
textual descriptions and visual inputs, offering a new way for game-playing agents to learn visual and
contextual knowledges through interaction with the environment.

This project explores the integration of LLMs with traditional RL techniques PPO to tackle the
popular action video game "Street Fighter II." The game’s complex dynamics and the requirement for
fast-pace, strategic play make it challenging for our project. We want to study 1) whether LLMs can
not only encode instructions but also be directly used as agent policies choosing actions given the
observation, and 2) whether LLMs can boost RL tasks through pre-trained knowledge inherited from
the text it learned.

3 Related Work

In the realm of grounding large language models (LLMs) within interactive reinforcement learning
(RL) environments, several research efforts have laid the groundwork and explored innovative
methodologies, addressing the limitations of previous research and setting the stage for advanced
integration of LLMs with RL in game-like scenarios.

3.1 Grounding Large Language Models in Interactive Environments with Online
Reinforcement Learning.

Carta et al. (2023) (3) explores the integration of Large Language Models (LLMs) with online
Reinforcement Learning (RL) to enhance decision-making in interactive environments. Traditional
LLMs can misalign with the environment due to a lack of grounding. The authors propose an
approach (GLAM) to achieve this alignment through functional grounding. They use LLM agent
as a policy and progressively being updated as the agent interacts with the environment, leveraging
online Reinforcement Learning to improve its performance to solve goal. They test this on a textual
environment called BabyAI-Text with spatial and navigation tasks, empirically investigates whether
LLMs can boost sample efficiency in learning RL tasks through pre-trained knowledge inherited
from the texts it learned. The study uses FLAN-TS variants (Chung et al., 2022) (4). to understand
the impact of online learning on functional grounding. We mainly use this research as guidance as
we also utilize LLM agent as policy and train using online reinforcement learning.

3.2 Guiding Pretraining in Reinforcement Learning with Large Language Models.

The paper introduces ELLM (3)), a method leveraging LLMs to guide reinforcement learning agents by
suggesting goals based on the agent’s current state. Traditional RL struggles with sparse rewards and
irrelevant novelty, so ELLM uses pretrained LLMs to provide context-sensitive, human-meaningful
goals, thus enhancing intrinsic motivation and exploration. ELLM improves agent behavior coverage
and performance on downstream tasks by evaluating in environments like the Crafter game and
Housekeep robotic simulator. The method highlights how LLMs can shape exploration and learning
in RL through incorporating common-sense and context-awareness into goal suggestions, bridging
the gap between abstract knowledge and practical application. This approach provides guidance
to our use of LLMs fine-tuned with RL, and LLM to prompt the agents to play game in the Street
Fighter game, but brings challenges to our experiment that LLM prompting to play action games is
hard due to the model’s lack of native understanding of the fast-pace environment.

3.3 ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL.

Zhou et al. (2024) presents ArCHer (6), a hierarchical reinforcement learning framework designed
for training LLMs to perform multi-turn decision-making tasks. Unlike single-turn RL methods,

ArCHer addresses the need for LLMs to manage long-term objectives, perform credit assignment,
and incorporate past actions over multiple interactions. The framework employs a high-level off-
policy RL algorithm to aggregate rewards over utterances and a low-level RL algorithm to optimize
token-level policies within each utterance. ArCHer demonstrates significant improvements in sample
efficiency and performance on multi-turn tasks, proving its capability to scale with model capacity
and efficiently manage long-horizon RL challenges.

4 Approach

Our approaches can be summarized as follows:

1. Baseline Models

Using GPT-3.5 (text-only), GPT-4o (vision and text), CNN trained with PPO (7)), and LLaVA without
fine-tuning.

2. Fine-tuning LLM Model

Fine-tuning text-only LLM model Mistral 7B instruct v2 (8) with online reinforcement learning.

Using RGB observer to extract visual information into texts, plus context prompt that describe the
gaming scene, character status then passed to Mistral model.

3. Fine-tuning Multimodal Model

Fine-tuning the multimodal model LLaVA on game-specific scenarios using online reinforcement
learning feedback loops, where the model’s predictions are continually adjusted based on the outcomes
of executed actions in the game environment.

You are playing as Ryu in Street Fighter 2nd.
Your goal is to beat the other opponent in Red.
You need to respond with a list of moves.
Your current score is

Health bar info ——»

Reward Info —® Your current position is
Current health bar are
Your previous action was
Position Info —————»4 To increase your score, move toward the
opponent and attack the opponent. To prevent
* your score from decreasing, don't get hit by the

oo mm———— ~. opponent.

The valid moves you can use are: {list of moves}

| R o
Abiaa e e i 4
RGB Detector

I
| i
| Reply with a bullet point list of moves. The format
H should be: "-<name of the move>" separated by a
new line.
Example if the opponent is close:
Motion History ————— -jump closer

- medium punch
- Kick X Example if the opponent is far:
" ; Motion - fireball
- Standing High -— - LLM <“——— _jump closer™

Punch

For LLM models, they all require a text prompt. For vanilla models, we use the prompt as shown
in the above figure with some hints such as description of what each action means. For fine-tuned
model, we unify them with the following prompt: "You are playing Street Fighter, your goal is to
defeat the opponent. Please check the given game state image. Your available movements are in
this list: [punch, kick, move-left, move-right, jump, jump-left, jump-right, squat]. Pick one best
movement to take from the list. Just answer in one word." where we describe the task and possible
actions without giving any extra hint about what action to take. For LLaVA, we also pass the game
screenshot to it as the image prompt.

All the LLM models outputs are pure text format, so we have a function to map the text output to
multi-binary action vector by keyword matching.

To fine-tune Mistral and LLaVA, we used PPO method with online learning. We created a dataset
wrapper from OpenAl Gym Retro Street Fighter game environment. It runs the environment under
the hood, and exposes the game state and reward through its APIs. We tried to increase the batch size
by running multiple environments in paralle, however, openAl gym only supports one environment to
be running at the same time. For LLaVA, because it takes an extra image input, we created a custom
class based on original TRL PPOTrainer to make PPO training work.

5 Experiments

5.1 Data

We use OpenAl Gym Retro Street Fighter game environment as our training and evaluation data,
specificlly, we used the game state that has character Ryu fights with Guile in the final round of Street
Fighter II (7). Instead of recording the data, all our training and evaluation are online. Specifically,
we created a pytorch dataset class where under the hood it runs a game environment. Whenever
__getitem___is called, it returns the current game state as well as tokenized prompt as a tensor. It also
exposes an API to progress the game state by taking an action.

5.2 Evaluation method

‘We have two main metrics to evaluate our models.

1) Winning Rate: We play 30 rounds of the game, and compute the winning rate. Higher winning rate
means better model. This is the most important metric we use to compare different models.

2) Average Reward: We play 30 rounds of the game, and compute the average final reward. The
reward is related to the HP difference between the player and opponent at the end of the game. Higher
reward means better performance.

5.3 Experimental details

For baseline, we used text-only LLMs (GPT-3.5-turbo, Mistral-7B-Instruct-v0.2), multimodal model
(GPT-40, LLaVA) and PPO with CNN to get lower bound and upper bound for our experiments. The
experimental pipeline, depicted in the accompanying diagram, utilizes an Observer class to interpret
the game state from RGB pixel data to determine the relative positions and actions of game characters.
The Observer processes frames to extract position data using color detection, which informs the
models about each character’s location relative to their opponent.

5.3.1 Text Only Models

For the text-only models, prompts are constructed based on the game’s current state, including
character and enemy positions, action history, and potential moves. These models can only generate
responses based on textual descriptions of the game environment without direct visual inputs. To
resolve this, the Observer class plays a critical role here, converting visual data from the game
into a structured text format that allows the models "see" the current game dynamics. The original
position detection logic in our experiments, adapted from LLM Colosseum (9), utilized a single
RGB pixel to represent the character. This approach, while straightforward, proved insufficient due
to the game’s dynamic background, which sometimes closely matched the color of the character’s
pixel color, leading to frequent wrong position detection. To address these challenges, we developed
a more robust method of detecting character positions, focusing on localized regions of the frame
and improving accuracy through centroid calculations. The enhanced method involves analyzing
a specified portion of the frame from the game, reducing interference from unrelated background
colors, and utilizing a centroid calculation to better represent the character’s position.

5.3.2 Multimodal Models

In contrast to the text-only approach, our multimodal models, which include GPT-40 and LLaVA, are
designed to utilize both textual descriptions and direct frames from the game. This model synthesizes
information from different modalities, thereby enhancing the accuracy of Al agent’s decision-making.
The direct visual inputs provide context that is inherently hard to capture using text-only descriptions,
such as spatial dynamics and nuanced movements from opponents, which are critical for strategic
gameplay in complex scenarios like Street Fighter.

5.3.3 Finetune Models with Reinforcement Learning

To optimize the performance of LLaVA and Mistral models specifically for our gaming environment,
we use the TRL PPOTrainer library, which focus on training LLM with reinforcement learning. We

configured the training with single batch size and a learning rate of 1.41 x 10~?, a total of 100,000
training iterations corresponding to individual game steps.

The training process leverages Nvidia’s A6000 GPUs with 48GB of memory, utilizing bfloat16
precision to maximize computational efficiency. The use of LoRA is to reduce the hardware
constraints without significant loss of learning capacity.

Two distinct strategies were tested for the reinforcement learning phase:

* Immediate Reward Update: A gradient step was taken at every frame based on the
immediate reward of the current frame’s action.

* Accumulated Reward Update: Rewards were accumulated throughout a game round, with
a single update step taken post-round based on the total accumulated reward.

Our experiments indicated that the immediate reward update method resulted in a higher winning
rate, due to the more responsive adaptation to the game dynamics.

An additional strategy was employed to encourage aggressive gameplay strategies: during the first
10,000 iterations, a small reward bias was introduced for actions classified as attacks (punching or
kicking), effectively motivating the models to engage more frequently in combat actions, which are
essential for scoring in the game.

Implementation and Integration The integration of the PPOTrainer with our game environment
required careful synchronization of the model outputs with the game engine inputs. The action
commands generated by the models were directly translated into game controls using a mapping
system that converts high-level actions (e.g., ‘move left‘, ‘jump right*) into specific game engine
commands.

This setup not only allowed for real-time model training and evaluation but also facilitated detailed
analysis of model performance across different training conditions and configurations.

5.4 Results

Below are the winning rate and average reward of each model measured by playing 30 rounds of
game.

Model Winning Rate | Average Reward
Random Action 0 -0.0539
GPT-3.5 0 0.02
GPT-40 0 0.074
Miistral 0 -0.061
LLaVA 0 -0.035
CNN RL 0.77 0.4825
LLaVA PPO 0.13 -0.038

6 Analysis

The results confirm the superior performance of the CNN trained with Reinforcement Learning (RL),
which significantly outperforms other models. This was anticipated due to the model’s direct training
on the game environment, allowing it to adapt more effectively to its dynamics. Notably, the LLaVA
model fine-tuned using our PPO-based training pipeline demonstrated improved performance over
their untrained counterparts, validating the efficacy of our training approach.

A critical insight from our experiments relates to the reward function employed. While direct game-
derived rewards (positive for hitting the enemy and negative for being hit) seem intuitively correct,
they do not consistently correlate with the winning rate. This discrepancy suggests that the reward
signals may not fully capture long-term strategic gameplay elements that contribute to winning. For
instance, a model could achieve a high score by frequently hitting the opponent but still lose if those
hits are not strategically significant. We observed this trend in both of baseline models and finetuned
LLM models.

The improved performance of fine-tuned LLMs over their vanilla baselines suggests that while the
general knowledge encoded in LLMs provides a foundation, domain-specific adaptations are crucial.
However, the substantial performance gap between these models and the RL-trained CNN indicates
that current fine-tuning approaches may not yet fully leverage the LLMs’ potential in this gaming
context. We also experimented training Mistral with PPO, but the final evaluation result indicated
several shortcomings of using text-based LLMs in dynamic gaming environment. The challenge
of using text-based Large Language Models in action-intensive games like Street Fighter can be
attributed to as belows:

1. Loss of Critical Game Information due to Mismatch Between Modalities

Mistral like LLMs are designed to process and generate text, which lacks the spatial and contextual
understanding of real-world environment. Game like Street Fighter II is deigned to be fast-paced,
involving constant real-time decision making, which depends hevaily on visual information and
action timing. LLMs cannot capture these nuances such as recognizing spatial relations, enemy
actions through only text descriptions. This is obvious with Mistral baseline, where the model has
higher probability of predicting ‘move left‘ or ‘move right* because the distance between enemy and
character cannot be captured precisely.

Besides, converting game states into text results in significant loss of detail. For example, subtle
movements or changes in enemy animation could signal an incoming attack or could signal a jump
to the other side of the character’s position, information that is crucial but may not be immediately
captured through text. When the LLM predicts actions based on this incomplete and imprecise
description, its ability to respond accurately is not guaranteed. This conversion process creates a
lag between observing the state and actual acting, even though we constraint the frames that both
characters could see and use when predicting the next move.

2. Complexity of Action Mapping

Action games like Street Fighter II require not just individual actions but sequences of actions at
precise timing to make effective moves. Mistral like LLM models, despite being fine-tuned using
PPO, may still struggle with learning effective action mapping purely from text. This is because the
reward mechanism in reinforcement learning is typically clearer and more immediate when based
directly on visual inputs rather than derived textual descriptions.

Considering these findings, redesigning the reward structure could be a promising direction to
enhance the training, potentially leading to better alignment with actual winning conditions. Further
experiment direction, such as tuning reward magnitudes or adding additional strategic elements into
the reward calculation, may yield more consistent improvements in model performance.

7 Conclusion

Our investigation highlights the effectiveness of CNN models trained with RL, which substantially
outperformed all other models in a straightforward gaming environment like Street Fighter II. Al-
though LLMs fine-tuned with PPO showed significant improvements over non-fine-tuned versions,
they still lagged behind the CNN model. This result underscores the limited utility of general
knowledge encoded in LLMs when applied directly to simple, action-based game environments.

Despite the observed limitations, we believe that LL.Ms could exhibit greater potential in more
complex or realistic game environments where decision-making involves multiple layers of strategy
and long-term planning. In such scenarios, the comprehensive world knowledge and contextual
understanding provided by LLMs might prove more advantageous.

Due to resource constraints, our training was not as extensive as desired. Future work could explore
the impact of longer training durations, higher batch sizes, and more sophisticated reward mechanisms
on the performance of fine-tuned LLMs. Adjusting these parameters could help in more closely
aligning the learning process with the strategic requirements of the game, potentially bridging the
gap between LLMs and RL-trained models.

In conclusion, while vanilla RL approaches currently dominate in simple gaming scenarios, the
evolving capabilities of LLMs present a promising frontier for research in more complex environments.
Further exploration and optimization of training paradigms and reward systems are essential to fully
realize the potential of LLMs in gaming and beyond.

8 Ethics Statement

Integrating pre-trained Language Models (LLMs) in game-playing environments may lead to various
ethical challenges and societal risks. First, there is the concern of reinforcement of biases. LLMs may
contain societal biases, which usually come from its training dataset. In a gaming context, this could
lead to biased decision-making strategies. Second, there is the potential for increasing addiction to
games. Many people give up a game when they feel it becomes boring or too easy. However, with
this LLM game agent, it might be always creating enough challenge to players, it may even react in a
way that maximizes the addictiveness. Third, LLMs may have unfair advantages in player-vs-player
scenarios, which will destroy one of the most important spirit of games: fairness.

For addressing bias, regular auditing of model decisions and outcomes can be established. This
should involve diverse testing groups to ensure a wide range of human perspectives. To tackle the risk
of enhancing addictive behaviors, design principles can be adopted that prioritize ethical engagement,
such as limiting play time or incorporating features that promote healthy gaming habits. As for
fairness, specific softwares could be developed to detect potential gaming LLMs that running in the
background.

References

[1] OpenAl, “GPT-40: model that can reason across audio, vision, and text in real time” Available
online: https://openai.com/index/hello-gpt-40/ Accessed on: June 7, 2024.

[2] Haotian, L., Chunyuan, L., Qingyang, W., Yong, J. L., Visual Instruction Tuning. arXiv preprint
arXiv:2304.08485.

[3] Carta, T., Romac, C., Wolf, T., Ahn, S., Chevalier-Boisvert, M., Dai, B., Towers, M., de
Lazcano, R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., Terry, J. (2023). Grounding Large
Language Models in Interactive Environments with Online Reinforcement Learning. arXiv
preprint arXiv:2302.02662.

[4] Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M.,
Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros,
A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai,
A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., & Wei, J.
(2022). Scaling Instruction-Finetuned Language Models. arXiv preprint arXiv:2210.11416.

[5] Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A., & Andreas, J. (2023).
Guiding Pretraining in Reinforcement Learning with Large Language Models. arXiv preprint
arXiv:2302.06692.

[6] Zhou, Y., Zanette, A., Pan, J., Levine, S., & Kumar, A. (2024). ArCHer: Training Language
Model Agents via Hierarchical Multi-Turn RL. arXiv preprint arXiv:2402.19446.

[7] StreetFighterAl (2023). Trained a RL agent to beat final boss in Street Fighter II. Retrieved from
https://github.com/linyiLYi/street-fighter-ai/tree/master

[8] Mistral 7B, “The best 7B model to date, Apache 2.0: https://mistral.ai/news/
announcing-mistral-7b/ Accessed on: June 7, 2024.

[9] DIAMBRA. (2023). LLM Colosseum Documentation. Retrieved from https://docs.
diambra.ai/projects/llmcolosseum/

[10] SuperCombo Wiki. (2023). Street Fighter 2: Champion Edition/Ryu. Retrieved from https !
//wiki.supercombo.gg/w/Street_Fighter_2:_Champion_Edition/Ryu

https://openai.com/index/hello-gpt-4o/
https://github.com/linyiLYi/street-fighter-ai/tree/master
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://docs.diambra.ai/projects/llmcolosseum/
https://docs.diambra.ai/projects/llmcolosseum/
https://wiki.supercombo.gg/w/Street_Fighter_2:_Champion_Edition/Ryu
https://wiki.supercombo.gg/w/Street_Fighter_2:_Champion_Edition/Ryu

	Key Information to include
	Introduction
	Related Work
	Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning.
	Guiding Pretraining in Reinforcement Learning with Large Language Models.
	ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL.

	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Text Only Models
	Multimodal Models
	Finetune Models with Reinforcement Learning

	Results

	Analysis
	Conclusion
	Ethics Statement

