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Abstract

FDA Medical Device recalls are critical and time-sensitive events, requiring swift
identification of impacted devices to inform the public of a recall event and ensure
patient safety. The OpenFDA device recall dataset contains valuable informa-
tion about ongoing device recall actions, but manually extracting relevant device
information from the recall action summaries is a time-consuming task. Named
Entity Recognition (NER) is a task in Natural Language Processing (NLP) that
involves identifying and categorizing named entities in unstructured text. Existing
NER models, including domain-specific models like BioBERT, struggle to correctly
identify medical device trade names, part numbers and component terms within
these summaries. To address this, we propose DeviceBERT, a medical device
annotation, pre-processing and enrichment pipeline, which builds on BioBERT
to identify and label medical device terminology in the device recall summaries
with improved accuracy. Furthermore, we demonstrate that our approach can be
applied effectively for performing entity recognition tasks where training data is
limited or sparse.

1 Key Information

• Mentor: Soumya Chatterjee
• Source Code: https://github.com/mmfarrington/devicebert-ner-project

2 Introduction

Large pre-trained language models have led to significant advancements in the field of biomedical
text mining and entity recognition tasks. Furthermore, fine-tuned models like BioBERT have
made significant strides in adapting large language models to the biomedical domain based on the
original BERT architecture (Devlin et al. [2019]), which is trained on biomedical domain corpora
from PubMed and PMC. It has been shown to achieve a significant advantage (0.62% F1 score
improvement) over BERT when applied to generalized biomedical named entity recognition tasks
(Lee et al. [2019]). In the traditional named entity recognition, given an input sentence of i tokens
x = {x1, x2, . . . , xi}, the NER model intends to assign each token xi to its corresponding label yi.

Nevertheless, the performance of pre-trained models like BioBERT on domain-specific entity recog-
nition tasks remains sub-optimal. Prior work has revealed inherent challenges when attempting to
perform NER tasks in the biomedical domain, such as limited availability of training data, ambiguity
in medical entity terminology, and heavy reliance on sub-domain specific acronyms in training
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Figure 1: BioBERT Architecture Lee et al. [2019]

corpora (Naseem et al. [2020]). These shortcomings are especially apparent in the medical domain
where increasingly specific terminology exists outside of the pre-trained model vocabulary.(Garneau
et al. [2019]).

Prior attempts to solve for the lack of domain-specific training data have utilized pre-trained models
to generate dictionaries of medical terms utilize pseudo-labeling to identify terms in unlabeled
datasets; however these approaches can produce unreliable training datasets, due to the complexity of
medical domain terms leading to poor generalization and improperly curated dictionary entries(Wen
et al. [2021] Other approaches have attempted to learn out of vocabulary words through few-shot
representations, with some success (Hu et al. [2019]).

Our approach addresses these challenges through applying targeted vocabulary enrichment to
BioBERT combined with a domain-specific pre-training methodology to resolve language ambiguities
during tokenization and improve the quality of the available training data via consistently applied
annotation rules. We call our model DeviceBERT, as it captures this methodology to demonstrate
added capability to adapt to domain-specific features identifying medical device trade names, part
numbers, and component terms. By tailoring BioBERT to this specific task, we aim to create a model
that outperforms its general-purpose counterpart in accurately identifying medical device terminology,
which can be used to better inform downstream tasks in medical device recall analysis. Additionally,
we aim to show that our methodology can be applied in a generalized manner to address common
shortcomings in this space and achieve satisfactory results on other domain-specific NLP tasks.

Our model outperforms BioBERT by 13.72% in identifying medical device, trade names, part
numbers and component terms in the recall summaries. This is because our multi-phase pipeline
approach optimizes BioBERT to learn domain-specific features, enhancing its ability to recognize
medical device terminology. The improved performance of our model has the potential to support
timely and informed decision-making in medical device recall analysis, ultimately contributing to
enhanced patient safety.

3 Related Work

Transfer learning is a widely adopted technique in machine learning that utilizes pre-trained model
weights from models trained on large-scale datasets to fine-tune the model on smaller, downstream
tasks (Zhuang et al. [2021]). This approach takes advantage of the knowledge captured by the
pre-trained model on the larger dataset and adapts it to the specific requirements of the target task,
thereby reducing the need for extensive retraining and improving performance.

Knowledge distillation is a related technique that involves training a smaller student model to
approximate the output of a pre-trained teacher model (Hinton et al. [2015]; Tian et al. [2022], Beyer
et al. [2022]). The teacher model, typically a larger and more complex model, serves as a reference
for the student model, providing guidance on how to map inputs to outputs. Through this process,
the student model learns to mimic the behavior of the teacher model, capturing its knowledge and
expertise. The key advantage of knowledge distillation lies in its ability to retain the performance of
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the teacher model while significantly reducing computational requirements, making it an attractive
approach for deploying models in resource-constrained environments.

4 Approach

Using prior work in this domain as a starting reference, we employed a multi-step approach to data
retrieval, pre-processing, annotation and vocabulary enrichment in order to address some of the
common shortcomings which we anticipated would present in a biomedical device entity recognition
task, namely the lack of quality annotated data and anticipated pitfalls like over-fitting and poor
model generalization on a limited training set. To achieve this objective, we created a pipeline to
extract, curate, pre-process, tokenize a medical device dataset, then subsequently apply enrichment,
regularization to create a DeviceBERT model which can be applied on downstream inferencing tasks.

Figure 2: DeviceBERT Process Overview

First, we extracted and annotated a Medical Device NER dataset defining and applying a consistent
annotation methodology (discussed in later sections) to enable the base model to learn contextually
correct, domain-specific terminology, relationships, and patterns in a recall action summary. Pre-
trained BERT tokenizers also provide sub-word tokenization, allowing for the representation of
outside vocabulary words to be represented as a sequence of sub-words (Wu et al. [2020], Hu et al.
[2023]). This is particularly useful for NER tasks, as it enables the model to capture the meaning and
context of words, even when they are unseen or out-of-vocabulary (Li et al. [2022]). However, we are
careful to observe that the BERT tokenization is not done semantically, which can lead to semantic
information loss when dealing with out of vocabulary (OOV) words in domain specific downstream
tasks (Nayak et al. [2020]). To address this problem, we enrich the vocabulary of the Distilbert
tokenizer to correctly recognize and tokenize medical device words, thereby better preserving their
semantic meaning.

To achieve this, we extract desired device vocabulary terms from the Device Recalls and Device
Classification datasets, then performed a number of cleaning, normalization, de-duplication, and
transformation steps before tokenizing the dataset into vocabulary words and introducing them to
the DistilBERT tokenizer vocabulary. Using this approach, we identified a set of 172,800 medical
device vocabulary tokens. We used this new vocabulary to increase the tokenizer vocabulary from
28,00 to 191,000 words. Following vocabulary enrichment with 100% of new vocabulary words, the
BERT tokenizer displayed significantly better recognition of medical device terms, and substantially
reduced sub-word tokenization of the device recall inputs.

To utilize this data for NER, we pre-processed, tokenized, and annotated the data in a format which
could be recognized by the BioBERT model to obtain a baseline, perform fine tuning, regularization,
evaluation and inferencing on the device recalls dataset. BIO (Beginning, Inside, Outside - also called
IOB), is long-standing, standardized annotation format used in NER tasks to tag certain tokens in
chunks of data Ramshaw and Marcus [1995]. To perform BIO tagging on the tokenized recalls data,
device name labels needed to be created to identify the medical device trade names and component
terms in the dataset.

Overfitting is a common risk when training language models on small downstream task datasets,
leading to poor generalization performance. This occurs when the model’s capacity exceeds the
training data size, causing it to memorize the training data rather than learning generalized patterns(Li

3



Before Vocabulary Enrichment After Vocabulary Enrichment
[CLS], An, Advisory, Letter, was, sent, to, the,
customers, via, certified, mail, ., To, ##shi,
##ba, issued, a, Field, Mo, ##di, ##fication,
In, ##struction, (, FM, ##I, X, ##RA, ##29,
-, 90, ##8, ##28, ), to, correct, that, software,
bug, and, bring, the, D, ##FP, -, 800, ##0,
##D, into, compliance, ., The, FM, ##I, is,
provided, to, the, customers, at, no, charge, .,
[SEP]

[CLS], An, Advisory, Letter, was, sent, to,
the, customers, via, certified, mail, ., Toshiba,
issued, a, Field, Modification, Instruction, (,
FMI, XR, A2, 9, -, 90, ##8, ##28, ), to, cor-
rect, that, software, bug, and, bring, the, DF,
P, -, 800, 0D, into, compliance, ., The, FMI,
is, provided, to, the, customers, at, no, charge,
., [SEP]

Table 1: Comparison of Tokenized Sentences Before and After Vocabulary Enrichment

et al. [2019]). To mitigate the risk of overfitting, and to ensure our model does not rely too heavily on
the train/test split, we implement K-Fold cross validation on the training data, followed by dropout
on the BERT embedding and encoding layers. Dropout simulates sparse activation from a given layer,
encouraging the network to learn sparse representations.

5 Device Annotation Methodology

We performed a number of pre-processing steps which involved extracting the recall action summary
text from the larger dataset with the unique identifier (cfres_id) and then performed random sampling
across the dataset to extract a representative subset of recalls data for annotation (Figure 3). To
perform the annotations of the recall data we utilized the doccano open source tool, which provides a
web server interface and mysql database for defining and applying annotations https://github.
com/doccano/doccano. After processing the input schema into a format that can be understood by
doccano, we defined 3 custom NER labels (B-DEVICE, I-DEVICE, O-DEVICE) to apply to the data.
In order to ensure consistency in the application of NER labels, the following labeling methodology
was used:

• The beginning word of a device name, component part or part number is assigned the label
B-DEVICE

• Subsequent words in the device name which should be given attention are assigned the label
I-DEVICE

• Outside words which are part of the device name (’and’, ’the’, etc) which should be excluded
from attention are assigned the label O-DEVICE

• The remaining tokens are assigned the value of ’O’, which indicates they are not tokens
which are part of any Device terms.

• Software components of a medical device are excluded from NER labeling, which includes
software trade names, version numbers, and operating systems.

• Different Device model numbers/names are treated as separate devices.

• Context of words is considered when applying NER labels; if a word has multiple meanings
in different contexts, the NER label is only applied where the term is used to refer to a
medical device.

• Special characters included in the device word or between device words were excluded from
NER labels.

Using this method, we annotated 10% of the recall actions source data after de-duplication; which
produced a labeled dataset of just over 2000 unique recall actions. During annotation, we observed
that the device label distribution is largely sparse, meaning the NER labels are applied infrequently
and, occasionally, not at all within a given recall action.

Once annotation was completed, the recalls text is extracted from doccano and tokenized into words.
The NER label tags are created and mapped to each word token at the positions designated in the
original label span. A 2-directional label mapping is then created mapping each label to its numeric
representation (0-3, with a special tag designated for unlabeled tokens (-100)). This ensures that
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Figure 3: Partial text example of an annotated recall action with BIO tagging applied to a device
trade name

only the tokens which are part of named entities contribute to the loss. This effectively masks the
remaining tokens and ensures that they do not influence the gradients during back-propagation.

The training and evaluation process closely follows the HuggingFace Transformers documentation
for some key implementation steps and code https://huggingface.co/docs/transformers/
tasks/token_classification. In this case, we chose to create a custom dataset based on the
previously annotated recalls data and then initialize a DistilBERT tokenizer and BioBERT base model
for token classification utilizing the HuggingFace transformers library, which is supported by the
original BioBERT project https://huggingface.co/dmis-lab/biobert-base-cased-v1.2.
This allows for flexibility in experimentation, utilizing permutations of the original input data
converted to the Huggingface Datset class.

To perform padding of the inputs and labels, we use a DataCollatorForTokenClassification, which
performs dynamic padding of the tokens as they are processed, selecting the max_length argument.
Next, using the labeled dataset in a train-test split, we fine-tune the BioBERT model on the recalls
dataset to recognize medical device terms and evaluate its performance to establish a baseline. We
will experimented with additional hyper-parameter optimization methods to further improve the
model performance and record the results as f1 scores. Finally,we compare the results from each
experiment and report our results, along with suggestions for further optimization efforts and potential
other expansions or applications of our findings to new research areas.

6 Experiments

To establish a baseline metric for the evaluation of DeviceBERT, we trained a base BERT model and
BioBERT model on the corpus of device recall actions. Our hypothesis was that BioBERT would
offer at the least a marginal advantage over BERT, due to the pre-trained medical domain knowledge
incorporated into BioBERT.

Next, we conduct several experiments to evaluate the performance of DeviceBERT:

• DeviceBERT utilizing combined regularization techniques on the DistilBERT base tokenizer
(+Reg only).

• DeviceBERT utilizing DistilBERT tokenizer with medical device vocabulary enrichment
(100% enrichment)

• DeviceBERT utilizing DistilBERT tokenizer with medical device vocabulary enrichment
(50% enrichment)

• DeviceBERT utilizing DistilBERT tokenizer with medical device vocabulary enrichment
(25% enrichment)

• DeviceBERT with a cimbination of regularization techniques and medical device vocabulary
enrichment (+Reg+Vocab).

Below is a brief summary of the dataset evaluation and experiments conducted, which are reported in
Table 3).

6.1 Data

The FDA Center for Devices and Radiological Heath (CDRH) makes available one of the most
comprehensive public datasets of medical device names, terms, product numbers and recall ac-
tions https: // open. fda. gov/ data/ downloads/ . This work relies on datasets made available
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through the Open FDA API. The CDRH Device Recalls Dataset contains 20,150 unique recall actions
(see Figure 2). We exclude duplicate recall description records and records which did not contain an
associated recall action from the dataset.

recall_id recall_action
207218 QuidelOrtho issued Important Product Correction Notification issued

April 9, 2024. Letter states reason for recall, health risk and action to
take:
Discontinue using, render unusable, and discard affected lots of VITROS
Free T3 Reagent Pack (and associated calibrators).
Complete the enclosed Confirmation of Receipt form no later than April
17, 2024. Upon receipt of your completed form, QuidelOrtho will
provide credit for, or replacement of, discarded product.
Save this notification with your User Documentation or post this noti-
fication by each VITROS ECi/ECiQ/3600/5600/XT 7600 System until
the issue has been resolved.
Please forward this notification if the affected product was distributed
outside of your facility.
If your laboratory has experienced the issue with this product and you
have not already done so, please report the occurrence to your local
Global Services Organization.
Resolution: QuidelOrtho’s investigation is ongoing and currently work-
ing to identify root cause.
Contact Global Services Organization at 1-800-421-3311.

Table 2: Sample Recall Action

To compile the tokenizer vocabulary, we extract the device_name and product_description fields from
the Device Recalls dataset, and combine with the FDA Device Registration database. The data is
cleaned to remove certain characters and tokens, de-duplicated, shuffled and tokenized into words.
Tokens which consist of purely numeric values were excluded from the vocabulary. This reduces the
total tokens from 4,034,870 to 172,821 tokens added to the tokenizer vocabulary, increasing the size
from 28,996 to 191,049 when 100% of the identified tokens were added to the vocabulary.

We conducted several experiments augmenting the tokenizer vocabulary using smaller vocabulary
token subset splits of 50%, 25%. We also conducted additional experiments using various methods of
token batch splitting (not reported here) by modifying the input order of the tokens, using random
shuffle, First in First Out (FIFO) and sorting by token length in descending order. However, much like
prior work in this area, we found that the manner in which the tokens were added to the vocabulary
did not substantially impact the results of training on the split subset, so long as the tokens themselves
were sufficiently representative of the sub-domain device vocabulary. (Wei and Vig [2022])

6.2 Evaluation method

Precision, Recall and F1 score are used as standard metrics to evaluate the performance of the model
on each NER task. For consistency in reporting the results of our experiments, we use the same
metrics used to evaluate the original BioBERT model on a given dataset (Lee et al. [2019]).

6.3 Experimental details

Adam Optimizer is a popular adaptive gradient descent method used in deep learning language
models. However, it is known to perform poorly on generalization using smaller datasets (Zou
et al. [2021]). For this reason, we use the modified AdamW optimizer when conducting training
experiments, which utilizes an adaptive, decoupled weight decay, whereby the regularization term is
only proportional to the weight itself.(Loshchilov and Hutter [2019]). The terms can be expressed as:
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mt = β1 ·mt−1 + (1− β1) · ∇θt

vt = β2 · vt−1 + (1− β2) · ∇θ2t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt − α · m̂t√
v̂t + ϵ

− α · w · θt

For our experiments, we initialized the inputs as follows:

Learning Rate (α) : 1× 10−5

Beta 1 (β1) : 0.9

Beta 2 (β2) : 0.999

Epsilon (ε) : 1× 10−8

Weight Decay (w) : 0.02

All experiments reported here were run using 1 L4 NVIDIA GPU. The batch size and input length
are set to 16 and 512, respectively.

6.4 Results

The results of the NER Tests conducted are reported in Table 3. First, we observe that in our baseline
testing BioBERT, which was trained on the biomedical domain corpus, performs less optimally than
anticipated, indicating that it was not able to generalize well to the sub-domain of medical device
terminology. Meanwhile, BERT, which was trained on only the general knowledge corpus, actually
slightly outperforms BioBERT in Recall and F1 score, however the margin is so narrow that it cannot
be said one model substantially outperformed the other.

Table 3: Performance comparison of language models on NER dataset of devices

Model Precision (%) Recall (%) F1 Score (%)
BERT 72.96 73.99 73.47
BioBERT 73.42 73.29 73.35

DeviceBERT
(+Reg only) 82.37 78.52 80.37
(+Vocab 100%) 75.59 73.46 74.51
(+Vocab 50%) 81.56 80.11 80.83
(+Vocab 25%) 80.14 77.87 78.91
(+Reg+Vocab) 85.14 82.07 83.56

Note: Best scores are reported from all epochs. Precision, recall, and F1
scores for BERT and BioBERT base cased models trained on the sub-domain
device recalls text are provided as a baseline metric. DeviceBERT scores are
displayed as a computed average of cross-validation scores.

Results for DeviceBERT across all experiments show that the combination of pre-training, coupled
with vocabulary enrichment achieves the highest overall F1 score. One interesting observation is the
relative high performance of DeviceBERT utilizing only regularization techniques, which we feel
warrants further investigation, as the use of regularization techniques alone appear to correlate with a
significant impact on overall model accuracy across all 3 metrics.
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7 Analysis

As shown in the vocabulary enrichment results, the DeviceBERT model performs most effectively
on a vocab token split of 50% which provides a balanced tradeoff between sufficient vocabulary to
tokenize the dataset effectively, without succumbing to the phenomenon of catastrophic forgetting,
which can occur when the model is introduced to a large set of of new data (Cossu et al. [2022]).
This split was chosen and combined with regularization techniques to evaluate the combined score
(Reg+Vocab), where DeviceBERT performed best.

The comparative analysis shown in Figure 4 points to a significant improvement in F1 score bewteen
our baseline BERT models and DeviceBERT. Using the combined approach outlined, we were able
to achieve an approximately 13.72% improvement in overall F1 score.

Figure 4: Comparative score of all models on device entity recognition task.

Our analysis finds that DeviceBERT performs best when utilizing a combination of pre-training
steps and vocabulary enrichment coupled with standard regularization techniques to help mitgate
overfitting.

8 Conclusion

DeviceBERT is proposed to maximize the use of an elaborately pre-trained domain-specific model
(BioBERT) for performing certain biomedical sub-domain tasks, by enriching a pre-trained tokenizer’s
vocabulary, thereby improve semantic retention during tokenization. DeviceBERT adds a new domain-
specific medical device vocabulary, while using an ensemble of annotation, cross-validation and
regularization techniques to avoid some of the pitfalls leading to overfitting when working with
limited training data.

The DeviceBERT approach significant improves the efficiency of modifying a base pre-training
model like BERT or BioBERT for a new sub-domain. With DeviceBERT we can leverage the power
of transfer learning using pre-trained language models for these new sub-domains without being
hindered by limited training data. The approach could be particularly attractive to ad-hoc and other
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special-purpose domains. DeviceBERT also paves the way for potential new applications of the
model to downstream Named Entity Linking tasks.

9 Future work

While the results reported are promising, more work can be done to improve the performance of
DeviceBERT on device recognition. We recommend a more robust training dataset using the existing
annotation methodology as a potential avenue for future work in addition to curating device data
from alternative sources that could bring greater contextual and semantic understanding. Finally, as
regularization showed promising results, we hypothesize that the experimentation using additional
regularization techniques could further boost overall performance on the task.

Additionally, the techniques and methodology proposed for the implementation of DeviceBERT
lays the groundwork for future research in the application of Device Entity Recognition to Device
Named Entity Linking or NEL. NEL is a growing field in Artificial Intelligence research which
involves a threefold process of entity recognition, disambiguation, and linking (Tedeschi et al. [2021])
Generic device terms ("kit","unit", "graph"), etc can have multiple meanings. By applying the NER
methodology described here to the task of NEL, future work could attempt to tie the named entities
from the recall actions to their corresponding unique identifier, in order to disambiguate the more
generic terms and provide greater context and deeper natural language understanding of the semantic
meaning of medical device terms.

10 Ethics Statement

A critical consideration when working with models trained on biomedical datasets is to always ensure
that the training data which utilizes patient information is ethically sourced and respects patient
privacy. The experiments conducted for this task utilized publicly available recalls datasets that
do not contain Personally Identifiable Information (PII); however that information could be easily
introduced in a downstream training or fine-tuning task. Before including any PII data in training,
steps should be taken to obtain patient informed consent where applicable and then ensure the data is
properly anonymized and masked to prevent identification.
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A Appendix

We include additional diagrams that may be useful to understanding the full data pre-training and
process flow in training and evaluating DeviceBERT (See Figure 5). This diagram breaks down
the steps involved in the complete pipeline from data extraction and curation, to pre-processing,
enrichment, validatation, regularization, training, evaluation and finally inferencing.

Figure 5: DeviceBERT Process Flow Diagram

Additionally, for reference, we include an example output from the various inferencing experiments
that were performed utilizing DeviceBERT. The table lists the original device recall text in full
followed by the predicted NER Device labels for tokens. To make the task more easy to analyze, we
set a threshold of 0.99 for the predicted label, and eliminated token predictions which fell below that
threshold. The result is shown in the table, where all the listed tokens represent words with a label
prediction of >= 0.99. (See Table 4).
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Recall Text Label

Philips Healthcare sent an URGENT-MEDICAL DE-
VICE RECALL letter dated October 15, 2012 to all
affected customers. The letter identified the product,
problem, and actions to be taken by the customers. Cus-
tomers were instructed to inspect all casters of the unit
to ensure that they are all secured. If a caster is loose,
customers were told to lock the caster in place, limit
movement of the cart and contact their local Phillips
Invivo Representative. Nevertheless, a Philips Invivo
representative will contact the customer regarding their
affected device. All affected devices will have new cast-
ers installed in order to correct the problem. Contact
your local Philips Invivo Representative at 1-800-722-
9377 for further information and support.

Token: DEVICE - Label: I-DEVICE
Token: RECALL - Label: I-DEVICE
Token: product - Label: B-DEVICE
Token: c - Label: B-DEVICE
Token: casters - Label: B-DEVICE
Token: caster - Label: B-DEVICE
Token: caster - Label: B-DEVICE
Token: Invivo - Label: I-DEVICE
Token: Representative - Label: I-DEVICE
Token: . - Label: I-DEVICE
Token: representative - Label: I-DEVICE
Token: customer - Label: B-DEVICE
Token: device - Label: B-DEVICE
Token: RECALL - Label: I-DEVICE
Token: product - Label: B-DEVICE
Token: customers - Label: B-DEVICE
Token: casters - Label: B-DEVICE
Token: caster - Label: B-DEVICE
Token: caster - Label: B-DEVICE
Token: cart - Label: B-DEVICE
Token: Invivo - Label: I-DEVICE
Token: Representative - Label: I-DEVICE
Token: . - Label: I-DEVICE
Token: Philips - Label: B-DEVICE
Token: representative - Label: I-DEVICE
Token: customer - Label: B-DEVICE
Token: device - Label: B-DEVICE
Token: devices - Label: B-DEVICE
Token: casters - Label: B-DEVICE
Token: installed - Label: B-DEVICE
Token: problem - Label: B-DEVICE
Token: Representative - Label: I-DEVICE

The firm disseminated a Medical Device Safety Alert by
letter beginning on 04/03/2020. The notice explained
the potential for damage that can occur during the pro-
cedure. Specifically, the Outflow Graft may be subject
to tears and the Strain Relief screw may break during
the pre-implant pump assembly and attachment to the
HVAD Pump. The letter also provided additional steps
for assembly and attachment to reduce the risk of dam-
age and tearing during the assembly procedure which
was provided in Appendix A.

Token: Medical - Label: B-DEVICE
Token: Device - Label: I-DEVICE
Token: Safety - Label: I-DEVICE
Token: Alert - Label: I-DEVICE
Token: by - Label: I-DEVICE
Token: letter - Label: I-DEVICE
Token: notice - Label: B-DEVICE
Token: procedure - Label: B-DEVICE
Token: Outflow - Label: B-DEVICE
Token: Graft - Label: I-DEVICE
Token: may - Label: I-DEVICE
Token: be - Label: I-DEVICE
Token: subject - Label: I-DEVICE
Token: to - Label: I-DEVICE
Token: Strain - Label: B-DEVICE
Token: Relief - Label: I-DEVICE
Token: screw - Label: I-DEVICE
Token: may - Label: I-DEVICE
Token: break - Label: I-DEVICE
Token: pump - Label: I-DEVICE
Token: assembly - Label: I-DEVICE
Token: HVAD - Label: B-DEVICE
Token: Pump - Label: I-DEVICE
Token: . - Label: I-DEVICE
Token: assembly - Label: B-DEVICE
Token: and - Label: B-DEVICE
Token: damage - Label: B-DEVICE
Token: assembly - Label: B-DEVICE
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Table 4: Inferencing Result with Thresholding on Device Recall Actions
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