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Abstract

This project aims to enhance miniBERT’s performance on sentiment analysis (SST),
paraphrase detection (PARA), and semantic textual similarity tasks (STS). Em-
ploying a multifaceted approach encompassing multi-task learning, random dataset
sampling, and Siamese network architectures, we investigate avenues to augment
miniBERT’s efficacy. Through systematic experimentation, we uncover nuanced
insights, revealing the efficacy of random sampling of datasets and mean pooling
of embeddings in improving model performance, while unexpected downturns are
observed with cosine similarity fine-tuning, particularly in STS tasks. Despite
challenges, our proposed model architecture shows promising results, notably in
Para and STS tasks.

1 Key Information to include

• Mentor: Arvind Mahankali

• External Collaborators: No

• Sharing project: No

• Team Contributions: Worked together on part 1 of the project, writing the project milestone,
and the final report. For part 2, John implemented and ran the code and David ran inferences.

2 Introduction

The advent of Transformer-based models has revolutionized the field of Natural Language Processing,
with Bidirectional Encoder Representations from Transformers (BERT) standing out as a particularly
influential model. BERT’s ability to generate rich word embeddings has enabled significant advance-
ments across different NLP tasks. However, despite BERT’s powerful capabilities, there exists the
challenge of efficiently adapting it to multiple tasks. Complications such as disagreement between
task objectives, varying data accessibility across tasks and effective transfer learning for adapting to
task-specific domains make learning multiple tasks a difficult problem. This highlights the need for
efficient multi-task approaches.

In this context, we explore the potential of a minimal BERT model to address the challenges associated
with multi-task learning. Our investigation focuses on the following adaptations: A combined loss
function which sums all task specific losses, random dataset sampling to balance training given
imbalanced datasets, gradient surgery for aligning conflicting task objectives, Siamese network
architecture to produce robust and rich vector representations of sentences and a convolutional neural
network backbone to further refine the BERT embeddings. Through a series of experiments and
methodical enhancements, we aim to augment miniBERT’s efficacy in sentiment analysis, paraphrase
detection, and semantic textual similarity tasks. This pursuit not only seeks to enhance task-specific
performance but aims for better generalization across a spectrum of NLP tasks.
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3 Related Work

The development of BERT (Devlin et al. (2019)) marked a significant advancement in NLP, setting
new benchmarks across a range of tasks through its transformer-based architecture. BERT’s success
has spurred a plethora of research aimed at improving and adapting transformer models for various
NLP applications. Multi-task learning has been explored extensively in NLP, aiming to improve
model generalization by leveraging domain-specific information from related tasks. Works like MT-
DNN ? demonstrated the effectiveness of using a shared transformer encoder for multiple tasks, and
highlight the potential of multi-task learning to improve model performance and generalization. Simi-
larly, Raffel et al. (2023) unified multiple NLP tasks using a text-to-text framework, demonstrating
significant gains in performance across diverse tasks.

Gradient conflicts are a constant challenge in multi-task learning, as gradients from different tasks can
interfere with each other, resulting in suboptimal performance. Yu et al. (2020) proposed a method
called PCGrad (Projected Conflicting Gradients), which projects the gradients in order to improve
multi-task learning stability. This technique of ensuring harmonious gradient updates has shown
significant promise in enhancing the performance of multi-task learning models. In our project, we
explore the use of gradient surgery to address conflits that arise between the three aforementioned
tasks.

Random Sampling methods have been applied extensively in multi-task learning to balance the
learning process across tasks with varying dataset sizes. More recently, newer methods of addressing
this problem have been brought forward; for instance, Wang et al. (2020) introduced an algorithm
called MultiDDS that serves the aforementioned purpose, albeit in the context of Neural Machine
Translation. We adopt a random subset sampling approach in this project to mitigate the impact of
the size discrepancies between our datasets.

Siamese network architectures have proven effective for tasks requiring comparisons of two input
sequences like semantic texual similarity (STS) and paraphrase detection. Reimers and Gurevych
(2019) introduced Sentence-BERT, which used a Siamese network to derive meaningful sentence em-
beddings. This approach significantly improved the performance of sentence-pair tasks by providing
a robust way to compute sentence similarity. Inspired by this work, we employ a Siamese network
architecture for the STS and Paraphrase detection tasks.

The integration of convolutional neural networks (CNNs) with transformer models has been explored
to enhance feature extraction from word embeddings. Kim (2014) showed that applying CNN to
NLP tasks improved performance when combined with pretrained word vectors; this motivates our
use of a CNN backbone to further refine the embeddings produced by miniBERT.

4 Approach

4.1 Baselines

Our baseline approach involves naively fine tuning miniBERT sequentially on the three downstream
tasks: Sentiment Analysis (SST) -> Semantic Textual Similarity (STS) -> Paraphrase Detection
(Para). The fine tuning was done on the full model as opposed to just the last linear layer. We do this
for all our subsequent experiments unless explicitly stated otherwise. The sequential nature of this
method is naturally prone to catastrophic forgetting, which is especially true in our case since we
trained the Para dataset last, which is much larger than the STS and SST datasets. We noticed that the
baseline accuracy gained from this approach for the sentiment analysis task is much lower than the
baseline provided in the handout, only 0.220. So we decided to replace this part of the baseline with
the number provided in the handout, while using our own results for the STS and Para tasks.

4.2 Multi-task Learning and Gradient Surgery

Our main approach to achieve multi-task learning is to compute a single loss consisting of the sum of
three task-specific losses. More specifically, we define the loss

Lmulti-task = LPara + LSTS + LSST. (1)

We use the following losses: Binary Cross-Entropy Loss for paraphrase detection, Mean Squared Error
loss for semantic textual similarity and Cross-Entropy loss for sentiment analysis. This formulation
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of the loss function guides the optimizer to find the parameters which minimize all three individual
loss functions, thus learning all tasks at the same time. However, it has been shown that multi-task
loss formulations such as (1) are often very difficult to learn, and can lead to worse performance
than single-task learning on the individual tasks Rusu et al. (2015); Parisotto et al. (2015). To this
end, we use the method of gradient surgery presented by Yu et al. (2020). The aim of this method is
to solve the problem of conflicting gradients, which describes the situation where the gradients of
the different loss functions point in opposing directions (cosine similarity < 0), causing learning to
stagnate in local minimas. Gradient surgery is defined as the operation

gi = gi −
gi · gj
||gj ||2

· gj , (2)

where gi is the gradient of the i-th task and gj is a conflicting gradient. Equation (2) projects gi onto
the normal plane of gj , thus removing the conflicting component.

4.3 Random Subset Sampling

We explored two different approaches for handling the enormous differences in size between the
datasets, with the Quora dataset being around 33 times and 47 times larger than the SST and STS
datasets respectively. The two approaches are as follows:

1. Train on the entire Quora dataset during each epoch. Each time the smaller datasets are
exhausted, we recycle them until the entire epoch is finished. The batch sizes are kept the
same for all tasks.

2. In each epoch, randomly sample a subset of the Quora dataset while massively increasing
the batch size for the paraphrase detection task. This approach is motivated by the potential
of overfitting from repeatedly recycling the smaller datasets while going through the Quora
data set. The reduced size of the data set from subsampling, along with the increased
batch size is aimed to result in fewer iterations of re-use of the SST and STS datasets, thus
hopefully reduce the risk of overfitting.

4.4 Siamese Network Architecture, Pooling and Cosine Similarity Fine Tuning

For the semantic textual similarity and paraphrase detection task, we use a Siamese network architec-
ture as proposed by Reimers and Gurevych (2019). For a sentece pair, we make two individual passes
of each sentence through the BERT layers, producing a pair of embeddings. All embeddings, includ-
ing the CLS embeddings, are then mean pooled and concatenated and combined into a single vector
representation of the sentences. The intuition is to incorporate both the global sentence information
from the CLS embedding with the local information from the individual word embeddings. Given
two pooled n-dimensional embeddings u, v ∈ Rn, we concatenate vectors along with their absolute
distances into a single vector, and project it to a single logit using a linear layer. Mathematically, this
can be written as

Logits = W (u, v, |u− v|) + b, (3)

where W ∈ R1×3n is the weight matrix and b is the bias. Note that for paraphrase detection and
sentiment textual similarity, the output logit is a single scalar, hence the singleton dimension of
the rows of W . The model can be made more expressive by combining more liner layers, which
we will investigate in our experiments. For sentiment analysis, we also apply mean pooling of the
embeddings, before projecting the output to 5 logits using a linear layer, representing the 5 sentiment
scores.

We also experiment with cosine similarity fine tuning for the semantic textual similarity (STS) task.
Given pooled embeddings u, v, the cosine similarity between them is defined as

Cosine Similarity =
u · v

||u||2||v||2
. (4)

This value is then used in place of the logit produced by the linear projection layer. The intuition is that
similar paraphrases will admit similar vector representations, therefore a high cosine similarity. Fine
tuning using this metric therefore encourages the model to learn similar embeddings for sentences
which are similar to each other.
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4.5 Convolutional Backbone for Classification Heads

For each task, we implement a 1D convolutional layer as a backbone for the final MLP layers,
taking the output of BERT as an input. This approach is inspired by the work of Kim (2014),
which investigated the application of convolutional neural networks for NLP tasks, using them as
an additional feature extractor for the learned word embeddings. It was shown the in paper that the
addition of a convolutional layer improved the performance of the model in several NLP domains
when combined with pretrained word vectors, including the task of sentiment classification trained
on the Stanford Sentiment Treebank dataset. We hypothesize that the addition of a convolutional
feature extractor to our BERT embeddings would yield similar performance gains by learning a set of
filters to extract the most essential information from the embeddings. To add further flexibility to our
architecture, we also add a residual connection which bypasses the CNN layer. This is to ensure that
the model performs at least on par with a simpler variant which does not have the CNN, and is able
to utilize the expressivity of the CNN if it indeed is able to provide performance improvements. An
illustration of our full model architecture is shown in figure 1.

Figure 1: Our model architecture. The top part illustrates the model for the sentiment classification
task. The bottom part illustrates the model for the paraphrase detection and sentiment textual
similarity task. The red lines represent residual connections.

5 Experiments

5.1 Data

We used the three datasets provided for the default project for our experiments:

1. Stanford Sentiment Treebank: The Stanford Sentiment Treebank (SST) dataset Socher
et al. (2013) is composed of 11855 single sentences from movie reviews, each given a
sentiment score between 0 and 4. The dataset is split up between 8544 train, 1101 dev and
2201 test examples.

2. SemEval STS Benchmark: The SemEval STS Benchmark dataset Agirre et al. (2013)
consists of 8628 different sentence pairs of varying similarity rated from 0 (unrelated) to
5 (equivalent meaning). The dataset is split between 6040 train, 863 dev and 1725 test
examples.
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Method Abbreviation
Simple recycling (No.1 in 4.3) SR

Random subset sampling (No.2 in 4.3) RSS
Cosine similarity CS

Mean pooling MP
Max time pooling MTP
Gradient surgery GS

Convolutional neural network CNN
Residual connection Res

No residual connection NoRes
Additional n output MLP layers MLP[n]

Table 1: Abbreviation conventions used in the paper.

3. Quora Dataset: The Quora dataset 1 consists of 404,298 question pairs with labels indicating
whether they are paraphrases of one another. The dataset is split between 283101 train,
40429 dev and 80859 test examples.

5.2 Evaluation method

We evaluate the performance of our models using the following metrics:

• Sentiment Analysis: The classification accuracy - the proportion of correctly classified
examples out of the total.

• Paraphrase Detection: The classification accuracy - the proportion of correctly identified
paraphrase pairs.

• Semantic Textual Similarity: Pearson Correlation Coefficient (measures the linear correla-
tion between the predicted similarity scores and the ground truth scores).

5.3 Abbreviations

We abbreviate our methods for the sake of brevity. Table 1 summarizes our conventions.

5.4 Experimental details

All the training were conducted on an 80 GB H100 GPU over 10 epochs with a learning rate of 10−5,
which we found to work the best from trying a variety of configurations. In each epoch, we randomly
sample 140000 datapoints from the Quora dataset with a batch size of 128, while using a batch size
of 8 for the STS and SST datasets. For the CNN, we used a kernel size of 3 and a number of filters
equal to the embedding size, which is 768. The hidden layers of the output projection network were
configured to project the input down to an intermediate hidden dimension of 384. Dropout was
applied to the last hidden layer with a dropout probability of 0.3.

5.5 Results

Our results on the dev set are summarized in table 2. Our test leaderboard results are given in table 3.
We conducted our experiments by adding the proposed methods outlined in section 4 one at a time,
with the purpose of gauging their individual impact on the performance.

The simple recycling of the smaller datasets (SR) without any other modifications other than introduc-
ing the multi-task loss yielded slightly higher overall score than the baseline. As predicted, switching
to the random sampling (RSS) of the Quora dataset seem to significantly boost the performance
of the model for the Para and STS tasks, resulting in a 0.041 increase in the overall score. An
even bigger performance improvement was attained by using mean pooling of all the output BERT
embeddings instead of relying soley on the CLS embedding (RSS + MP). Surprisingly, introducing
cosine similarity fine-tuning (RSS + MP + CS) for STS gave lower scores for all metrics. Due to

1https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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this observation, we decided to continue our subsequent experiments without cosine-similarity fine
tuning and rely soley on mean pooling across all task heads. The addition of gradient surgery (RSS
+ MP + GS) led to a slight increase in the scores for paraphrase detection compared to all previous
models, and an increase in the SST accuracy compared to the model without cosine-similarity.

To investigate the effectiveness of the CNN approach suggested by Kim (2014) for multi-task BERT,
we began by implementing the CNN backbones without any residual connections (RSS + MP + GS +
CNN + NoRes) to remain faithful to the original implementation. Interestingly, the model exhibited
worse performance across all tasks after introducing the CNN contrary to our expectations. Even
after trying different configurations for the kernel size and the number of filters, we did not observe
any meaningful improvements to the performance. In Kim (2014), the author proposed to use max
time pooling instead of mean pooling. Making the switch to this approach (RSS + MTP + GS +
CNN + NoRes) did not yield any drastic changed either, only resulting in a slightly lower overall
score. We further experimented with adding an addition hidden layer to the output projection network
while keeping the previous configurations (RSS + MP + GS + CNN + NoRes + MLP[1]). This
simple adjustment resulted in a 4.5% increase in the overall score of the model. We then added the
residual connection around the CNN backbone as described in section 4.5 (RSS + MP + GS + CNN +
Res + MLP[1] ). This addition further enhanced the overall score of the model and yielded the best
paraphrase detection accuracy out of all of our models. Lastly, we added one additional hidden layer
to the projection layers (RSS + MP + GS + CNN + Res + MLP[2]), which further added 0.08 points
to the overall score, making it our highest overall performing model and the best one for SST and
STS.

Method SST Para STS Overall

Baseline 0.515 (Handout) 0.632 0.304 0.600
SR 0.507 0.633 0.362 0.607
RSS 0.500 0.759 0.371 0.648
RSS + MP 0.502 0.832 0.817 0.747
RSS + MP + CS 0.493 0.791 0.433 0.669
RSS + MP + GS 0.510 0.842 0.818 0.754
RSS + MP + GS + CNN + NoRes 0.491 0.787 0.715 0.712
RSS + MTP + GS + CNN + NoRes 0.497 0.782 0.684 0.707
RSS + MP + GS + CNN + NoRes + MLP[1] 0.518 0.858 0.680 0.739
RSS + MP + GS + CNN + Res + MLP[1] 0.486 0.867 0.855 0.760
RSS + MP + GS + CNN + Res + MLP[2] 0.520 0.848 0.870 0.768

Table 2: Experimental results on the dev test set.

Method SST Para STS Overall

RSS + MP + GS + CNN + Res + MLP[2] 0.533 0.847 0.859 0.770

Table 3: Test leaderboard results.

6 Analysis

6.1 Impact of Random Subset Sampling

It was evident during training that the simple recycling of the smaller datasets led to aggressive
over-fitting, as the train accuracies kept increasing while the dev scores quickly stagnated. This is
not surprising since a single epoch for the Quora dataset is equivalent to around 40 epochs for the
other datasets using a batch size of 8, with each epoch taking around 35000 iterations. Using our
configuration of sampling 140000 datapoints in each epoch and a batch size of 128, each epoch now
takes around only 1094 iterations to complete. This results in the model training on the SST dataset
only once per epoch, and roughly 1.5 times for the STS dataset. We generally noticed a positive
correlation between the sample size, batch size and the model performance. However, the memory
constraints of the GPUs limited us from going beyond our current configuration. Overall, randomly
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sampling a subset of the Quora dataset and training the model with a larger batch size had the desired
effect of improving generalization while simultaneously reducing the time required to train the model.

6.2 Impact of Cosine Similarity Fine Tuning and Mean Pooling

Using mean pooling of all the embeddings produced by the Siamese BERT and concatenating them
with the absolute distance between the pooled embeddings greatly improved the performance of
our model over only using the CLS embeddings. This result aligns with the findings of Reimers
and Gurevych (2019). As mentioned in the article, the inclusion of the absolute distances formation
between two embeddings can help the model distingush between similar sentences or if two sentences
are paraphrases of each other, with the intuition being that sentences that are alike should be close
to each other in embedding space. We hypothesize that the mean pooling operation improves
performance by enhancing the global information in the CLS embedding with the local contextual
information contained in each token embedding, leading to a more hollistic representation of the
whole sentence. Furthermore, mean pooling might also aid in averaging out the any noise present in
the data, making the model more robust to overfitting and outliers.

Interestingly, using cosine-similarity fine tuning drastically worsened the performance of the model
on the STS task instead of improving it. Our theory as to why this might be the case relates to
Reimers and Gurevych (2019), which mentions that the Siamese network design along with mean
pooling and absolute distances as input features makes the sentence embeddings comparable with
cosine similarity. If this is indeed the case, then normal fine tuning already achieves what cosine
similarity aims to do, i.e make similar pairs of sentences/paraphrases similar in embedding space.
This means that removing the MLP layer might just equate to removing the expressivity it inherently
possesses, replacing it with a mechanism which was already there in the first place.

6.3 Impact of CNN Backbone

The implementation of the CNN backbone architecture worsened the overall performance of the
model, as can be seen in table 2. Even with max time pooling as was used in Kim (2014), the
results still largely remained the same. One possible explanation could be caused by the well-known
difficulty of learning identity mappings for neural networks, the same phenomenon which motivated
the ResNet architecture He et al. (2016). Introducing an additional convolutional layer might not
help if the input embeddings are inherently rich in relevant information, making it difficult to extract
more. For our case, this might very well be the case considering that BERT is built using several
layers of multi-headed attention blocks, enabling it to learn embeddings which contain extremely
rich contextual information. In comparison, Kim (2014) used word2vec embeddings Mikolov et al.
(2013) which are produced without the attention mechanism, therefore lacking the local and global
contextual information which the BERT embeddings posses. This leaves more room for potential
improvements to be found by a CNN. Inspired by ResNets, we added residual connections to route
the input to the output of the CNN to facilitate the learning of the identity mapping when needed,
allowing the model to choose wether or not to utilize the CNN for its predictions. The improved
scores we obtained from adding the residual connection supports our hypothesis, that the addition of
the CNN layer in this context is in fact redundant due to the rich semantic information already present
in the original BERT embeddings. Lastly, adding subsequent hidden projection layers improved the
performance as expected, and demonstrates the empirically observed negative correlation between
the number of parameters and test loss within deep learning, as described by Kaplan et al. (2020).

7 Conclusion

Our experiments unfolded a series of noteworthy findings. Firstly, we observed that simple recycling
of smaller datasets leads to overfitting, highlighting the importance of RSS to compensate for dataset
size discrepancies. Additionally, mean pooling of all embeddings, combined with the absolute
distances between pooled embeddings, significantly boosted model performance, which aligns with
prior research findings. On the contrary, the introduction of CS fine-tuning led to a decline in our
model’s performance across all tasks 2, with a near 50% drop in STS correlation. Furthermore,
integrating a CNN backbone failed to yield improvements. This could possibly be due to the rich
contextual information already present in the BERT embeddings, effectively rendering additional
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feature extraction redundant at best, and detrimental at worst. Despite these challenges, our model
architecture achieved promising results, especially in paraphrase detection (0.848) and STS (0.870).

In conclusion, this project underscores the complexity of enhancing miniBERT’s performance. While
certain techniques like GS, RSS, and MP yielded substantial improvements, others, like CNN, posed
unexpected challenges. Moving forward, avenues for future work include additional pretrainign
of miniBERT to further enhance its ability to capture nuanced linguistic patterns. Additional
considerations for future work include refining the integration of CNN backbones and investigating
scaling laws within the multi-task learning framework.

8 Ethics Statement

The development and deployment of NLP models like miniBERT, and the methodologies employed
to enhance their performance, raise several ethical considerations which are crucial to address and
mitigate. One primary ethical consideration is the potential for biases inherent in the datasets used
for training and evaluation. Biases in data can lead to biased model predictions, perpetuating, and
even exacerbating, societal inequalities. Mitigation strategies for this concern include thorough data
preprocessing to identify potential biases and diversifying training datasets to ensure representation
from various demographics.

Another ethical challenge is the responsible use of NLP models in sensitive applications such as
sentiment analysis and paraphrase detection. Biased or inaccurate predictions in these tasks can
have significant real-world consequences, including misinformation propagation and discrimination.
Mitigation strategies may include incorporating transparency measures to clarify the limitations of
model predictions, and implementing robust evaluation frameworks to assess model performance
across diverse demographic groups.

Additionally, the computational resources required for training and deploying large-scale NLP models
pose environmental concerns. The carbon footprint associated with training deep learning models
and the disparity in access to computational resources can exacerbate existing environmental and
socioeconomic inequalities. Mitigation strategies for this concern include exploring energy-efficient
training methods and considering the environmental impact when designing a model.

Ultimately, while models like our miniBERT offer immense potential for positive societal impact,
they also present ethical challenges that must be addressed proactively.
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