
BERT Multitask Methods for Low-Parameter
Fine-Tuning

Stanford CS224N Default Project

Elton Manchester
Department of Computer Science

Stanford University
eltonm@stanford.edu

Abstract

This project aims to implement and compare low-parameter strategies for multitask
learning in a BERT language model. These include projected attention layers
(PALs), task-embedded attention (EmBERT), and a basic multi-head classification
system. These methods allow for good scalability, allowing a model to perform well
on a large range of tasks without the additional overhead of a large number of added
parameters. An additional advantage of effective low-parameter techniques is that
the majority of information encoded by the BERT embedding must be stored in the
base model, leading to more robust embeddings. However, basic multitask learning
is vulnerable to conflicting gradients between tasks, which leads to interference
between tasks and worse performance overall. This motivates the addition of
task-specific functions other than the classification heads, as these functions can
encode information about each task without interfering with other tasks. The
main differences between different techniques are the specific function used, and
the integration location of this function. I investigated varying combinations of
function and location to determine which methods are most effective. This included
the simultaneous use of multiple functions and locations, which was not tested
in previous experiments. The best performing technique involved adding task-
specific PALs before classification, which differs from preexisting literature. I
propose that this disparity is due to the low-resource setting, which emphasizes the
importance of the pretrained weights of the model. Attempting to integrate task-
specific parameters can interfere with the base model, and must be done cautiously
to avoid overfitting. This suggests that distinct task-specific layers are more robust
than parallel integration in this setting because of the reduced interference with the
embeddings of the pretrained BERT model.

1 Project Information

• TA mentor: Default Project
• External collaborators: No
• External mentor: No
• Sharing project: No

2 Introduction

Multitask training is particularly important in language model applications. With the current
prevalence of AI assistant models, language models are expected to respond well to almost
any request a user makes. Due to the wide range of tasks, it is unfeasible to attempt to
fine-tune a model for each potential application. This experiment focuses on a small set of
three tasks, but the intention is for the methods used to be scaled to a much larger set of tasks.

Stanford CS224N Natural Language Processing with Deep Learning



Current methods have demonstrated state-of-the art performance on standard benchmarks,
in some cases even beating individually trained single-task models. However, each of these
results is based on the use of only one of the many techniques that have been explored. It
may be valuable to combine several due to the different effects on the encoding that they
can provide. Some approaches simply add additional parameters or linear transformations
to each layer, while others add task-specific attention. It is reasonable to hypothesize that
each of these transformations conveys a unique aspect of each task, in which case models
would benefit from multiple methods. The goal of this work is to evaluate this possibility in
comparison to individually applied multi-task techniques. Adding too many task-specific
functions has diminishing returns and may also dilute the base embeddings, so a secondary
goal is developing methods to ensure that added parameters augment the embeddings rather
than dominate them. For this goal, propose the simple addition of a trained scalar value,
initialized to a small float, which multiplies the contribution of each task-specific function.

3 Related Work
The two main papers this work is based on are BERT and PALS [1] and Task-Embedded
Attention (EmBERT) [2]. PALs is an early paper with a similar structure and goal to this
one. The authors were attempting to achieve state-of-the art performance while minimizing
the parameters used. Of the task-specific functions, they found that projected attention
layers performed the best, hence the name of the paper. With their implementation, the
model was able to perform well on 8 different tasks with only 1.13x the parameters of the
original model. On top of this, they introduced a sampling scheme called annealed sampling
which is geared specifically towards addressing common pitfalls in multi-task training.
Every model in this experiment makes use of this sampling method, which has an adjusted
distribution based on the current epoch. They also experimented with different insertion
locations, with canddiates including the top of the model and at the end of each BERT layer.
Both options are explored here.

EmBERT is a later paper that expands on PALs by introducing an even more parameter-
efficient technique. The namesake of EmBERT is task-embedded attention, which involves
inserting a task-specific vector into each head of multi-head attention. This experimentally
achieved comparable results to PALs, but is more efficient int terms of parameters. The
improvements over the shared-parameter model were small, but significant in the context of
the size of the model.

Finally, there is a paper that I did not reference for this work, but presents an in-
teresting application of multi-task training. This is the Liu paper on multi-tasked deep
neural networks for semantic classification [3]. In this paper, researchers were able to use
multi-task training to address the issue of data limitations in supervised training. Supervised
training can be especially effective due to the human approval, but can be laborious to
collect data for. Researchers were able to take human-annotated data for a range of
similar tasks with the intent of applying it to a smaller range of tasks. They were able to
demonstrate that the combination of tasks actually improved the performance of each task.

4 Approach
The starting point of the experiment is the most basic form of a multitask learning model.
This is also my baseline, similar to its use in the EmBERT paper [2]. This model shares all
parameters between tasks, with classification heads as the only difference between the tasks.
Any successful technique should have a better performance than this model, otherwise
the additional parameters would be a waste of storage and computation resources. The
EmBERT authors also compared to separately trained models for each task. Similarly, I will
use the model trained for sentiment classification only as a point of comparison.

The next step is to add projected attention layers as described in the paper BERT
and PALs [1]. This method involves inserting task-specific, miniature BERT layers between
the last base BERT layer and the classification heads. To reduce the parameters required, the
PAL projects the input down to a lower-dimensional space before calculating attention. The

2



result is then projected back to the original dimension to be classified. This transformation
is given by

TS(h) = V Dg(V Eh), (1)

where V E and V D are the encoder and decoder projection matrices. g can be any function
(in this case, it is multi-head-attention). The projected size can be arbitrarily small, so I will
use the size recommended by the authors (204). There is an alternate use of these PALS
presented in which they are inserted into the final layer normalization of each BERT layer.
This allows the final matrix multiply to be left out of each PAL, saving parameters. On top
of this, I add one last extension in the form of a learned scalar to multiply the PAL output by
before adding it to the FFN output of the layer. This moderates the strength of the PAL
compared to the base model.

For a third point of comparison, I will use task-embedded attention as in EmBERT [2]. This
approach uses even fewer parameters than PALs, adding a single task-specific vector the
each of the multi-head attention heads. This altered head is given by

EmAtt(Q,K, V ) = Softmax

(
Q̂T K̂√

dk

)
V̂ (2)

Q̂ = Q+Q
(i)
emb, K̂ = K +K

(i)
emb, V̂ = V + V

(i)
emb.

The terms added to the query, key, and value are the additional embeddings for task i. By
using vectors instead of matrices, EmBERT has a tiny parameter cost, allowing it to be an
effective option when a large number of tasks are required.

All of these approaches use annealed sampling for training. Batches are randomly
sampled from all of the datasets according to a distribution dependent on the size of each
set. The motivation of annealed sampling is that early epochs should avoid overfitting to
small sets, whereas later epochs should make sure that all tasks are sufficiently represented.
To this end, the probability of a sample being drawn from dataset Di with size Ni is
proportional to Nα

i , where α is given by

α = 1− 0.8
e− 1

E − 1
, (3)

where e is the current epoch and E is the total number of epochs. As α gets smaller, the
distribution approaches uniformity, giving the desired sampling behavior. Experimentally,
the success of this method was seen when the accuracies of tasks associated with smaller
datasets improved significantly in later epochs. For the scope and goals of this experiment it
was not necessary to test multiple sampling schemes.

All code other than the provided BERT starter code is original. I will use hyperpa-
rameters and equations from the papers referenced, but the code itself will be my own.
There are also a few unique aspects of my code that differ from the setups described in
the source papers. First, the PALs paper shares the projection linear layers across all
BERT layers, while my version uses separately trained projection layers for each PAL.
Additionally, the trained scalar multiplier was an original contribution which was effective
for this setup.

5 Experiments

Data: Every model except for the single-task model uses SST, CFIMDB, Quora, and
SemEval datasets, while the single task uses only SST and CFIMDB. Future experiments
could benefit from additional data, and incorporating more sets would likely result in a
performance improvement. However, due to the comparative nature of the experiment,
state-of-the art performance is not necessary as long as techniques can be compared against
the baseline. Also, because this experiment uses fixed-length epochs, the incorporation of
additional data would lead to compromises in training time or in representation of all sets.

3



Evaluation: The sentiment classification and paraphrase detection tasks use accu-
racy, which is the percentage of correct classifications. The STS task uses Pearson
correlation, which takes a value from -1 to 1. All of these metrics will be compared to the
base model. To produce a combined final score, the Pearson correlation is normalized, then
the three scores are averaged.

Experimental Details: All variations of the model will use the same hyperparam-
eters and training scheme to keep the environment as controlled as possible. Every test uses
full-model fine-tuning with a learning rate of 1e-5, and 10 epochs with 400 batches per
epoch. Annealed sampling is used across all tests due to its observed effectiviness across
several studies. The time to run each test was consistenly around 1 hour due to the similar
parameter counts for each trial.

The multitask configurations to be compared are as follows. Single-Task is a
model fine-tuned only for sentiment classification. Multi-Task is a model that shares all
parameters between tasks, so the classification heads are the only task-specific components.
EmBERT uses task-embedded attention, meaning that task-specific vectors are added to
each MHA head in every BERT layer. PALs Top inserts projected attention layers for
each task before the classification head. PALs Parallel adds the output of a PAL before
the final layer normalization of each BERT layer. PALs Parallel Weighted uses a single
learned weight scalar for each layer that determines the contribution of the PAL. Top +
Parallel (Same) uses a single PAL for each task, but inserts it both in parallel and on top.
Top + Parallel(Different) uses two PALs for each task, one parallel and one on top. Finally,
Combined uses task-embedded attention and one PAL for each layer added both in parallel
and on top.

Results: For baselines, I used a single-task model fine-tuned only for sentiment
classification, and a multitask model that shares all parameters between tasks. As expected,
the performance of the multitask model suffered slightly on sentiment classification
compared to the single-task model. Next, I tested several variations of task-specific functions
and the locations in which they are inserted. Of these, only PALs top outperformed the
baseline model. Finally, I combined groups of the more successful multitasking methods.
The Top + Parallel (Same) model achieved the best results out of all of the tests. I also

Single Task Multitask
Sentiment (Accuracy) 0.522 0.501
Paraphrase (Accuracy) N/A 0.709

STS (Pearson Correlation) N/A 0.097
Table 1: Baselines (All Parameters Shared)

Multitask EmBERT PALs Top PALs Parallel PALs Parallel Weighted
Sentiment 0.501 0.467 0.483 0.482 0.503
Paraphrase 0.709 0.550 0.674 0.606 0.550

STS 0.097 0.125 0.302 0.069 0.147
Overall 0.586 0.527 0.602 0.541 0.567

Table 2: Comparing Individual Multitask Methods

Top + Parallel (Same) Top + Parallel (Different) Combined
Sentiment 0.496 0.464 0.449
Paraphrase 0.680 0.626 0.686

STS 0.293 0.263 0.249
Overall 0.608 0.573

Table 3: Comparing Combined Multitask Methods

evaluated the best-performing method, PALs Top + Parallel (Same) on the test set. It

4



received scores of 0.505, 0.676, and 0.315 for each task respectively, for an overall score
of 0.615, even better than the score on the dev set. Unexpectedly, many of the methods
tested performed worse than the baselines. A few configurations were much better than the
baseline, but the majority were worse. In particular, a the methods that embed task-specific
parameters into every BERT layer generally perform worse than the methods that use
stand-alone layers, which I will discuss next in my analysis.

Analysis: Before implementing the learned weight scalars for each layer, I tested
a few weight values manually for a single epoch to compare their effectiveness. Lower
weights generally seemed more effective, which provides insight to the mechanism causing
the reduced performance of certain configurations. It is likely that the task-specific
parameters were over-represented in the final output, causing the model to effectively
make use of a much smaller parameter count. On top of the learned scalar, it may also be
useful to penalize large gradient updates to the task-specific functions to prevent them from
dominating the encoding.

Additionally, differing gradient directions cause the improvement of one task to re-
duce the performance of another. Notably, the baseline model had the best sentiment
classification score, but the second worse semantic textual similarity score. In contrast,
the majority of the techniques used demonstrated more consistent accuracies across the
board, even if the overall score was worse. This suggests that these techniques can address
the the issue of "forgetting" tasks, but are not as effective for gradient alignment. This is
because the task-specific parameters cannot be altered by other tasks, so each task will have
some guaranteed representation in the model. This effect is most dramatic in the STS task,
which has a relatively small dataset. The best model tripled the correlation of the baseline,
showing that the baseline model may not have retained enough information about this task.
However, qualitatively, epochs where one task was especially accurate tended to have worse
scores in the other tasks, which is a symptom of gradient alignment issues. As such, it may
be worth supplementing multi-task training with alignment techniques such as gradient
surgery. Overall, with several configurations outperforming the baseline, this experiment
successfully demonstrates the effectiveness of various multi-task techniques and identifies
areas for improvement.

6 Conclusion

Based on the experimental results, the most robust multi-task methods involve stand-alone
layers that are inserted between existing layers (in this case, before the classification heads).
However, the integration of task-specific functions throughout the model can provide
even better performance, provided that they are added in moderation. This serves as a
successful proof-of-concept for the combination of multiple task-specific integrations, as
the best-performing model was used PALs both as stand-alone layers and as supplemental
additions within each BERT layer. I was unable to find literature in which a similar
technique was used, so this is likely a novel idea.

However, there are some limitations in the result. First, the sub-par performance
of some methods suggests that this implementation of each technique is un-optimized,
which limits the significance of the results. As an exploratory study, this makes the results
presented a starting point for potential further research, but not a conclusive endorsement of
one technique over others. Additionally, the baseline itself was relatively low compared
to other studies. This is not necessarily an issue because the purpose of the experiment is
comparison, not state-of-the-art performance. However, the techniques presented have not
yet been proven to be state-of-the-art viable. Finally, the amount of data and training time
used is limited due to resource availability.

An avenue for further research would be a more thoroughly optimized and fine-
tuned version of new combined techniques presented. This could reinforce the legitimacy of
these methods and compare them to a more universal baseline. In particular, addressing
the gradient alignment issue further would potentially allow for large performance
improvements.

5



7 Ethical Considerations

When engaging with multi-task learning, one significant ethical concern is seen in the biases
and unforseen side-effects that can be produced by the use of disparate datasets. Even in
single-task applications, the model is effectively extrapolating from the training information,
which is already logically unsound. In multi-task training, the model makes decisions on
each task partially based on data from the other tasks, which has the potential to increase the
risk of biases or unintended behaviors. This factor makes evaluating and testing each model
for biases and potentially harmful results vitally important. For this experiment, the use of
annealed sampling addresses the issue by ensuring that all tasks are fairly represented. This
reduces the risk that one task skews the results of another task, therefore also reducing the
risk of side-effects. If similar techniques were used for public or commercial use, however,
it would be necessary to engage in further testing (such as with the AI Safety Benchmark),
as simple accuracy numbers are insufficient to determine biases.

Additionally, there would be ethical concerns if similar models were used for slightly
different applications than their original training. Compared to a shared-parameter
multi-task model, the injection of task-specific data serves to make the model more
specialized. For example, a model trained to recognizes paraphrases in Quora questions may
not be well-suited to identify paraphrases in a math or programming forum. This could pose
problems when the model is used for automatic moderation, as comparable performance
to the original task cannot be guaranteed. As before, specific testing and fine-tuning of
the model for the desired context would be the solution. However, to protect against
potential misuse of the model, it may be worth being conservative with the addition of
task-specific information. In this experiment, this was accomplished by the addition of the
scalar multipliers. These could further be normalized to a smaller range of values in order to
ensure the added information provides a sufficiently small impact on the final embedding.

References
[1] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers for efficient

adaptation in multi-task learning, 2019.

[2] Łukasz Maziarka and Tomasz Danel. Multitask learning using bert with task-embedded attention.
In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–6, 2021.

[3] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. Representa-
tion learning using multi-task deep neural networks for semantic classification and information
retrieval. NAACL, May 2015.

6


	Project Information
	Introduction
	Related Work
	Approach
	Experiments
	Conclusion
	Ethical Considerations

