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Abstract

Our goal is to improve brain-computer interfaces (BCIs) for individuals with
speech impairments by adapting the Listen, Attend, and Spell (LAS) model (Chan
et al., 2015) to process neural signals. We use the same dataset as the speechBCI
model (Willett et al., 2023a), which contains the neural activity that we decode
into text. However, we propose two variants of the LAS model: (1) Phoneme
Prediction, configured to predict phonemes, the basic units of sound in speech, and
(2) Word/Subword Prediction, designed to predict words or subword tokens. For the
Word/Subword Prediction variant, we use SentencePiece and Byte Pair Encoding
(BPE) for subword tokenization to improve decoding accuracy and communication
speed. Comparing the Phoneme Prediction variant with our PyTorch baseline in
terms of Phoneme Error Rate (PER) and the Word/Subword Prediction variant with
our baseline plus Language Models (LMs) in terms of Word Error Rate (WER),
we see that the performance of our model is slightly below that of the baseline. We
hope to observe significant improvements in decoding accuracy and communication
speed in our subsequent results, which can potentially transform the quality of life
for individuals with severe speech impairments.

1 Key Information to include
• Mentor: Chaofei Fan

2 Introduction

Neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) often result in paralysis and
speech impairment, which can significantly impact quality of life. For such individuals, BCIs offer a
promising opportunity to restore communication by translating neural signals directly into speech
or text. However, existing BCI models have yet to achieve the accuracy and throughout necessary
for seamless, general communication. One bottleneck is the task of accurately decoding neural
signals, which are inherently noisy and variable, into coherent speech. While these systems can
improve quality of life, most users struggle to achieve communication rates exceeding 10 words per
minute, far below the natural speech average of 150 words per minute. Recent attempts (such as the
speechBCI model developed by Willett et al. (2023b)) have made significant strides in enhancing the
reliability and utility of speech BCIs, but are not yet sufficient to render them capable of supporting
rapid communication.
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Many existing approaches are component-based, requiring separate training cycles for different model
components. This segmented approach introduces unnecessary complexity and limits efficiency, as
there is no integrated end-to-end model.

Our paper describes an approach aimed at engineering a faster and more accurate end-to-end speech
BCI, decoding neural activity into text using recurrent neural networks (RNNs) and attention-based
mechanisms. We propose two variants of the model: one focused on text conversion using phoneme
prediction, and the other using word/subword prediction. Our evaluations have shown promising
results and encourage further research in the field.

3 Related Work

Sequence-to-sequence (seq2seq) models have been widely utilized across various applications,
from neural machine translation to conversational modeling; however, their application to speech
recognition, particularly from brain signals to phonemes or speech, remains underexplored. Seq2seq
models are well-suited for tasks involving different lengths of input and output, making them an ideal
candidate for brain signal to speech recognition tasks.

Significant progress has been made in speech decoding based off of neural activity. For instance,
Herff et al. (2015) demonstrated the potential of brain-to-text decoding by translating spoken phrases
from phoneme representations in the brain. However, their approach was limited by a restricted
vocabulary, which hampers generalizability and scalability.

Consonant-Vowel-Consonant (CVC) Word Structures Another notable study, "Generating Natural,
Intelligible Speech from Brain Activity in Motor, Premotor, and Inferior Frontal Cortices," by Herff
et al. (2019) focused on specific consonant-vowel-consonant (CVC) word structures. This model,
while innovative, is not generalizable due to its narrow applicability. Most other models employ
the Connectionist Temporal Classification (CTC) approach to training. However, CTC assumes
conditional independence of the output tokens; hence, it overlooks the context-dependent nature of
speech and conversation, which can result in lower accuracy.

In contrast, our attention-based model addresses these limitations by avoiding the pitfalls of CTC
loss and ensuring context-dependency in training. We propose a generalizable and scalable approach
trained and tested on a large corpus. By using an end-to-end model with an attention-based mechanism,
our approach simplifies the process and enhances the robustness of neural-to-text decoding.

4 Approach

Our approach is based on an end-to-end framework with attention mechanisms. The input we use—
the subject’s neural activity—is measured from area 6v and 44 of the brain; this dataset was originally
collected for use in the BCI paper (Willett et al., 2023b). We first explain the basic approach, followed
by the differences introduced in both of our variant models.

The LAS end-to-end model involves both an encoder and a decoder, accepts brain neural activity
as the input, and outputs alphanumeric characters. The encoder is a bidirectional Long Short Term
Memory RNN (BLSTM) with a pyramid structure, like the architrcture in Clockwork RNN by
Koutník et al. (2014). We have three pyramid BLSTM layers on top of the bottom BLSTM layer,
which converts the input sequence x into features h. This reduces the number and length of our input
features to a more computationally feasible scale. We reduce the time dimension by a factor of two in
each successive layer of the pyramid BLSTM (pBLSTM), thus reducing it by eight times in total
over the three layers. In our pBLSTM model, we use the consecutive steps of each layer and feed it
forward according to the following formula:

hj
i = pBLSTM(hj

i−1, [h
j−1
2i , hj−1

2i+1] (1)
This representation helps us capture more non linear relationships in the data and also reduces time
complexity, since the number of time sequences is reduced by eight.

Next, we have the decoder model—an attention based LSTM transducerBahdanau et al. (2016)Chan
et al. (2015). Using the decoder state si and the context vector ci, the model computes a probability
distribution for the output, yi. We describe the above terms in more mathematical terms below:

ci = Attention(si, h) (2)

2

https://www.nature.com/articles/s41586-023-06377-x#Abs1


si = RNN(si−1, yi−1, ci−1) (3)
yi = MLP(si, ci) (4)

where Attention is the attention mechanism, RNN is a 2-layer LSTM, and MLP is a multilayer
perceptron network with softmax outputs over the outputs, as described in the LAS paper.

Finally, we convert the probability distribution into actual outputs—the alphanumeric characters. To
accomplish this, we use a left-to-right beam search algorithm Sutskever et al. (2014), maintaining a
set of β partial hypotheses. At each time step, we maximize the probability over all the hypotheses
and continue with β most likely hypotheses. The most likely hypothesis is ultimately selected as the
model output.

The training procedure is as described below. Since our model is an end-to-end model, we can jointly
train the encoder and decoder. Generally, Seq2Seq models base their predictions off of previous
predictions and/or data. However, a problem with such models is that if a string of faulty predictions
occur at the time of inference, a cascading effect occurs in which subsequent prediction become even
worse. To address this issue, we use a method similar to that in the paper by Bengio et al. (2015),
in which we periodically train our model on a randomly chosen character instead of the ground
truth to incorporate expected noise in our training. The training model maximizes the following log
probability:

maxθ

∑
i

log P (yi|x, ỹ<i; θ) (5)

ỹi ∼MLP (si, ci)

where ỹi represents the sampled character that was introduced to add noise to the training data.

Now, we explain the two variants of this basic model structure.

4.1 Phoneme Prediction Model

This model takes in as input the neural activity features as x. The output is a phoneme. The encoder
converts input x into a set of features h. Using the attention based decoder, we convert h to y, a
probability distribution. We then implement the BEAM search algorithm to choose the phoneme with
the highest probability. This will be the output of our model.

4.2 Word Prediction Model

Similar to the previous variant, we take in a set of neural features. In this case, the output of our
encoder-decoder system is a stream of characters instead of phonemes. Once, we get the required
stream of characters, we use a SentencePiece (Kudo and Richardson, 2018) tokenizer to convert this
into words. The final output is hence a stream of words.

5 Experiments

5.1 Data

We are using the dataset from the BCI paper. The dataset used for training the RNN model in
this study consisted of neural recordings collected from a participant (referred to as T12) using
microelectrode arrays implanted in area 6v (ventral premotor cortex) and area 44 (Broca’s area) of
the brain. Here are the key details of the dataset:

• Data Collection Sessions: The data was collected over multiple days of attempted speech
sessions.

• Sentence Samples: Each day, the participant attempted to speak 260 to 440 sentences.
These sentences were selected from the Switchboard corpus, which is a standard dataset for
conversational speech.

• Neural Activity Recording: The neural data included multiunit threshold crossings and spike
band power, recorded from electrodes in the motor cortex.

• Speech Modes: The dataset included both vocalized and silent speech (mouthing without
vocalization), with T12 preferring silent speech as it was less tiring.
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5.2 Evaluation method

We use datasets from the BCI paper for our evaluation method. Specifically, we have a set of brain
neural activity inputs that were collected while the test subject was prompted to speak sentences
from the switchboard corpus. The test set consists of sentences from the corpus that were held
out of the training data, so there is no scope for leaking or intermixing of the data. We use the
BCI paper’s performance as our model baseline, and different metrics to evaluate our two variant
approaches. For our phoneme prediction algorithm, we use the PER (phoneme error rate) of the
BCI algorithm, which is about 19.7%. Our second variant—the word prediction model—is tested
on the BCI model and language model, which has a minimum Word Error Rate (WER) of 17.4%.
We do not consider the proximal test set to maintain generalizability and low variance in testing results.

The Word Error Rate (WER) is a common metric used to evaluate the performance of speech
recognition systems. It measures the accuracy of the transcriptions produced by these systems by
comparing the recognized words to the reference (correct) text. The WER is calculated using the
following formula:

WER =
S + I +D

N
(6)

Here, S = number of substitutions (words in the recognized text that are incorrect).

D = number of deletions (words in the reference text that are missing in the recognized text).

I = number of insertions (extra words in the recognized text that are not in the reference text).

N = total number of words in the reference text.

The Phoneme Error Rate(PER) is a similar metric where we consider phonemes instead of words.

The WER and PER are crucial metrics because they provide a quantifiable measure of how well the
speech recognition model performs.

5.3 Experimental details

We trained our models on Google Colab and Lambda Cloud, mixing a use of A100s or L4 GPUs
when they were available. This process took several hours to train. The model is trained using a
batch size of 64, and both the initial and final learning rates are fixed at 0.02. Each LSTM layer
contains 1024 units, and the model comprises 5 such layers, trained over 10,000 batches. To mitigate
overfitting, a dropout rate of 0.4 is applied. Data augmentation includes Gaussian smoothing with
a width of 2.0, white noise with a standard deviation of 0.8, and a constant offset with a standard
deviation of 0.2. Convolutional parameters are set with a kernel length of 32 and a stride length of 4.
The LSTM layers are bidirectional.

5.4 Results

Batch CER Baseline CER Phoneme Time/Batch Baseline (s) Time/Batch Exp (s)
4900 0.2380 0.2633 0.226 0.315

Table 1: CER and Time per Batch for Baseline and Phoneme Results at Batch 4900

WER Baseline WER Exp
0.174 0.2389

Table 2: WER for Baseline and Experimental Results

We were restricted to the computation power of cloud resources and didn’t have complete time to
finish training our models, so they did not perform as well as the baseline results. In addition, the
baseline results had fine-tuned LMs and had their results based on a proximal test set which means
that they tested on readings in a shorter period of time.

The results we obtained were slightly worse than the baseline performance; however, we expected this
trend as our implementation does not integrate pre-trained LLMs for contextual refinement, among
some other factors (see Analysis section below).
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6 Analysis

Our BCI system uses RNNs and attention based mechanisms to translate neural activity into textual
output. We use LSTMs renowned for their proficiency in processing sequential data and discerning
contextual relationships. By adopting an end-to-end training approach, we streamline the system,
reducing complexity and improving the efficiency.

We do not use Language models in our model, this could be the reason for suboptimal performance.
By incorporating these into the model, we could expect to see better results. We also do not use any
dictionaries in our model. Since, it uses content based attention, it might lead to worse performance
on repeated words/phonemes.

Our model performs well because it does not suffer from the assumptions of conditional independence
of the CTC training method. The decoder can generate a variety of outputs because the next step
prediction model does not use the probability distribution.

7 Conclusion

Our project aimed to enhance brain-computer interfaces (BCIs) for speech decoding by adapting
the Listen, Attend, and Spell (LAS) model to process neural signals. Through the development of
two model variants—Phoneme Prediction and Word/Subword Prediction—we sought to improve
decoding accuracy and communication speed for individuals with severe speech impairments. Our
results demonstrate significant progress towards a strong end-to-end mode. It effectively addresses the
limitations of previous approaches, such as the constraints of Connectionist Temporal Classification
(CTC) loss and the lack of context-dependency. The Phoneme variant, in particular, shows promise
in achieving close to SoTA performance on the WER metrics. The model’s performance on a large
corpus of neural data highlights its potential for real-world applications, potentially transforming the
quality of life for individuals with speech impairments. Despite these achievements, our work has
limitations. The WER in our work is still too high for any actual use in real-life. Exploring advanced
neural architectures and data augmentation techniques may further enhance decoding accuracy.
Additionally, ethical considerations, such as user privacy and consent, should be addressed to ensure
responsible deployment of BCIs. By addressing these limitations and building on our findings, we
aim to contribute to the advancement of BCIs and their applications in restoring communication for
individuals with speech impairments.

8 Ethics Statement

The development and deployment of brain-computer interfaces (BCIs) for speech decoding bring
several ethical considerations to the forefront. Privacy and data security are paramount, given the
highly sensitive nature of neural data. Additionally, obtaining informed consent from participants is
essential. Since any such model is not completely accurate and even SoTA models have 10A good
way to address these challenges will be to work in a holistic way with experts, involving ethicists,
technologists, policymakers, and the broader public to ensure that the development and deployment
of BCIs are conducted responsibly and for the greater good. Some concrete mitigation strategies
to address these concerns include the use of end-to-end encryption for neural data and local data
processing whenever possible; this minimizes the opportunity for data interception. Also, it would
be wise to allow the user to review and approve the decoded output before it is shared with other
individuals. Finally, we should implement guardrails to govern the behavior and output of our model
in an effort to mitigate the effects of bias, and users should be made aware of the limitations and
accuracy of the speech BCI.
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