
Comparing BERT Fine-Tuning Methods
Stanford CS224N Default Project

Adrian Stoll
Stanford University
adrs@stanford.edu

Jennifer Ho
Stanford University

jenph@stanford.edu

Daniel Tyshler
Stanford University

dtyshler@stanford.edu

Abstract

This project compares methods for adapting BERT to downstream NLP tasks including
sentiment analysis, paraphrase detection, and semantic text similarity. The goal is to identify
techniques that generalize well while fitting within our computational budget. Our baselines
are models with frozen BERT weights and task specific additional layers. We compare tuning
methods for the pre-trained BERT layers including: full fine-tuning; parameter-efficient
Low-Rank Adaption (LoRA); and variants of LoRA including DoRA and Rank-stabilized
LoRA (rsLoRA). We find full-fine tuning is most effective for all the tasks. For paraphrase
and similarity tasks the input consists of a text pairs. We compare Siamese networks with
concatenating the text pairs into a single token sequence with token type embeddings and find
the latter generalizes better with less overfitting. We experimented with multi-task training
and opted to stick with single task training. This is because 1) single task experimentation
is faster and 2) the mutli-task models overfit tasks with less data while underfitting tasks
with more data. By combining the best experimental results we obtain high test leaderboard
scores.

1 Key Information to include
• Mentor: Arvind Mahankali (amahanka@stanford.edu)
• External Collaborators: None,
• Sharing project: No

1.1 Contributions
• Adrian: Baseline model architecture, multi-task dataloader, training and experiment logging script,

LoRA experiments, and Siamese Network vs Concatenation experiments

• Daniel: Learning and batch size experiments, and multi-task training experiments, alternate loss
functions, final training run

• Jennifer: Learning rate schedule, training duration experiment, dropout experiment, regularization and
associated experiment, final training run

2 Introduction

Our goal is to identify what fine-tuning methods provide the best performance within a reasonable training budget
on the downstream semantic analysis, paraphrase detection, and semantic text similarity tasks. Fine-tuning
foundation models is fundamental to building a wide range of applications where there may not be enough data,
compute resources, expertise, or time to build a quality model from scratch. The current paradigm is to use
large-scale unsupervised pre-training to create a foundation model, add task specific adaptor layers, and fine-tune
the model with a task specific corpus Devlin et al. (2019). Pre-trained foundation models have been shown to
learn zero-shot abilities such as language translation and summarizing during the pre-training process Radford
et al. (2019). The motivation for fine-tuning pre-trained foundation models is the knowledge of language gained
during pre-training will transfer and improve performance on downstream tasks.

The difficulty of this problem is finding techniques that are effective across heterogeneous tasks - such as
classification and regression, varying data sizes, and different input types - such as single or multiple inputs.
While fine-tuning is vastly faster and cheaper than pre-training, the training time and cost are still non-negligible.

Stanford CS224N Natural Language Processing with Deep Learning



This motivates our approach to use parameter-efficient fine-tuning techniques, such as LoRA Hu et al. (2021), to
balance performance improvements with computational efficiency. Because there are multiple tasks we also
explore jointly training a multi-task model to improve the performance on each task by transferring knowledge
from the other tasks.

3 Related Work

"LoRA: Low-Rank Adaptation of Large Language Models" by Hu et al. (2021) introduces a method that injects
trainable rank decomposition matrices into each Transformer layer of a frozen pre-trained model, significantly
reducing the number of trainable parameters and GPU memory requirements. This approach maintains model
performance on benchmarks like RoBERTa, DeBERTa, GPT-2, and GPT-3 while improving training efficiency
and eliminating additional inference latency. LoRA’s efficiency makes it practical for adapting large-scale
language models to specific tasks with lower computational and memory costs.

We also experiment with variants of LoRA such as DoRA and Rank-Stabilized LoRA. "DoRA: Weight-
Decomposed Low-Rank Adaptation" by Liu et al. (2024) proposes a novel parameter-efficient fine-tuning
method. DoRA introduces a weight decomposition analysis to understand the differences between full fine-
tuning (FT) and LoRA, decomposing pre-trained weights into magnitude and direction components for efficient
updates. This method enhances the learning capacity and stability of LoRA, consistently outperforming it on
tasks like commonsense reasoning and visual instruction tuning while avoiding additional inference overhead.

Additionally, we followed "A Recipe for Training Neural Networks," by Karpathy (2019) which describes how
to train incrementally more sophisticated models to make debugging easier. The steps the articles outlines
are: looking at the data, setting up a simple training pipeline and baseline, overfitting on a small batch of data,
overfitting on the full dataset, adding regularization, and tuning hyperpaparameters.

"Siamese Neural Networks for One-shot Image Recognition" by Zoch et al. (2015) and "Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks" Reimers and Gurevych (2019) present a method using
Siamese neural networks to effectively learn features for one-shot learning. By training the network to discrimi-
nate between pairs of images, the model achieves a high performance on classification tasks with limited data.
In our work we evaluate Siamese networks for the paraphrase and similarity tasks.

"How to Fine-Tune BERT for Text Classification?" Sun et al. (2020) is highly relevant to our project. It explores
fine-tuning strategies for BERT on text classification, offering a general solution and investigating methods like
layer selection, layer-wise learning rates, and addressing catastrophic forgetting. Their insights on within-task
and in-domain pre-training, as well as multi-task fine-tuning, can help optimize our model for sentiment analysis,
paraphrase detection, and semantic text similarity, addressing issues of overfitting and data imbalance we
encountered in our multitask training.

4 Approach

4.1 Model Architectures

All model architecture use pre-trained BERT encoders Devlin et al. (2019) and multi-layer perceptron (MLP) as
building blocks. The models use the BERT encoder to produce a CLS token embedding from their input.
For paraphrase and similarity tasks the input consists of a pair of strings. The Siamese network model
architecture encodes each input separately before concatenating representations while the input concatenation
model architecture encodes both inputs together as part of a single token sequence before applying BERT.

Following the BERT layer are task-specific adaptors. For single-task models there is an adaptor for a single task
while for multi-task models there are multiple adaptors for each tasks. The adaptors are MLPs with a sequence
of hidden layers each applying dropout Hinton et al. (2012) to their input and using ReLU as the non-linearity.
The output layer includes dropout but lacks a non-linear activation function. For sentiment analysis the output
layer produces logits for five classes, for paraphrase the model produces logits for two classes, and for similarity
the layer outputs a single scalar.

We considered the following families of model architectures:

• Single-Task: The paraphrase/similarity model pictured in Figure 1a is using the Input Concatenated
model architecture.

• Multi-Task: The multi-task models have adaptor MLP layers for each task. Each task uses a subset of
the layers of the multi-task model indicated by the dotted lines in Figure 2a. Tasks transfer learn from
each other by sharing the same pre-trained BERT layers. The multi-task architecture can support 1, 2,
or 3 tasks and is a generalization of the Single-Task architecture.

2



• Siamese-Network: The Siamese network model architecture Reimers and Gurevych (2019) applies
the fine-tuned BERT model to both input strings in isolation to produce a fixed size representation. The
vector representations for both inputs are concatenated together and fed into a multi-layer perceptron.
We choose this architecture as a baseline because it was the easiest to implement. The limitation of
this model is the attention layers only compare tokens within each input not between the inputs.

• Input Concatenated: We hypothesize that inter-input attention is useful for paraphrase detection and
similarity tasks. This model architecture concatenates the input pairs with token type embeddings to
distinguish which input each token is from and feeds the concatenation through multiple transformer
layers in the BERT module. This approach allows the model to match words or phrases in one input
with those in the other using the attention mechanism to effectively compare the inputs.

(a) Similarity and Paraphrase
Model

(b) Sentiment Models

Figure 1: Single Task Model Architectures.

(a) Siamese Multi-Task Model
Architecture

(b) Siamese Paraphrase and
Similarity Model

Architectures

4.2 Objective Functions

For the sentiment analysis and paraphrase detection tasks we use the cross-entropy loss function. For semantic text
similarity we use mean-squared-error. The final evaluation metric for the similarity task is the Pearson Correlation
between the predicted and ground truth similarity scores. We considered using the Pearson Correlation between
the predictions in a batch with the ground truth as a training objective. We opted not to use this objective due
to concerns the mean predicted similarity scores used to compute the correlation would be too noisy for small
batch sizes. We implemented contrastive-loss Gao et al. (2022) and cosine-similarity Reimers and Gurevych
(2019). These alternative loss functions did not provide an improvement, however that may have been because
we had insufficient time to debug the implementations.

3



4.3 Training

We trained all the models by shuffling the data and iterating over it in mini-batches. For optimizing model
parameters we used AdamW Loshchilov and Hutter (2019). For optimizing hyperaparameters we ran ad-hoc
experiments and used grid search. Unless noted otherwise we used the following hyperaparameter values:

• AdamW: β1 = 0.9, β2 = 0.999, ϵ = 10−8

• Regularization: weight decay = 0.01, dropout probability = 0.3

• Epochs: 10 for sentiment and similarity tasks, 2 for paraphrase

• Number of MLP hidden layers: 0

For multi-task models, we implement a round-robin training approach which cycles through batches from
each task. The training loop exhausts available data for tasks with smaller datasets before tasks with larger
datasets. When this occurs, we start over from the beginning of the smaller dataset, allowing training to continue
uninterrupted. This method ensures that training proceeds smoothly across all tasks by cyclically resetting
and iterating through the datasets, thereby maintaining consistent exposure to each task throughout the model
training process to prevent forgetting.

To assist the experimentation process, we set up a structured testing system to automate the configuration and
execution of our experiments. It allows us to define various experimental setups, run, and log results. The
existing code we used is the project starter code and the Weights and Biases experiment tracking library Biewald
(2020). The original code we wrote is the task specific adaptors, training loop, experiment setup, and grid search
logic.

5 Experiments

5.1 Data

For Sentiment Analysis, we use the Stanford Sentiment Treebank (SST) for fine-grained sentiment classification.
For Paraphrase Detection, we use the Quora Question Pairs dataset to train models on identifying semantic
equivalence, and for Semantic Text Similarity (STS), we utilize the SemEval dataset to train models on rating
the degree of semantic similarity between texts.

5.2 Evaluation Method

We use the following evaluation metrics for each task: Accuracy for Sentiment Analysis and Paraphrase Detection
and Pearson correlation coefficient between predicted and actual similarity scores for Semantic Text Similarity.
See Proposal for more details. During the training we monitoring the training loss for each batch at the end of
each epoch evaluate the task evaluation metric on the training and dev datasets.

5.3 Fine-Tuning

We experimented with the following fine-tuning methods: Full fine-tuning of the pre-trained parameters; and
LoRA, DoRA, and Rank-Stabilized parameter efficient fine-tuning methods. We compare these methods with
the baseline of only training task specific layers MLP layers.

We used the following LoRA specific hyperaparameters as defaults for the following experiments unless
noted otherwise. LoRA rank = 8, LoRA dropout probability = 0.1, and target modules = "query","key",
"value","attention_dense","interm_dense","out_dense".

5.3.1 LoRA Variants

In these experiment we compare variants of LoRA on each of the tasks. We observe rsLoRA is the LoRA
variant with the highest training and dev scores with the lowest runtime of the methods. Additionally the table
shows DoRA nearly doubles the training time when number of epochs is held constant. Because LoRA family
models have fewer trainable parameters than full fine-tuning, we observe less overfitting. Because LoRA family
models have more parameters and model capacity than the baseline frozen-weight BERT model, we observe less
underfitting.

5.3.2 Target Modules

LoRA and related parameter efficient fine-tuning techniques can be applied to any subset of the weight matrices
in a network. The table below compares accuracy, training time, and peak GPU memory usage when using LoRA

4



Task Architecture Fine-Tuning Dev Score Train Score Training Time Peak GPU Memory
Sentiment LoRA 0.4541 0.4878 17m 32s 2.59 GiB
Sentiment DoRA 0.4569 0.4884 32m 34s 4.2 GiB
Sentiment rsLoRA 0.4777 0.5202 17m 31s 2.62 GiB
Sentiment Full 0.5204 0.954 18m 45s 3.02 GiB
Paraphrase Siamese LoRA 0.7375 0.7377 3h 3m 12.19 GiB
Paraphrase Siamese DoRA 0.744 0.7454 5h 25m 9.30 GiB
Paraphrase Siamese rsLoRA 0.7523 0.7572 2h 43m 5.99 GiB
Paraphrase Concatenate LoRA 0.8406 0.8444 2h 23m 6.47 GiB
Paraphrase Concatenate DoRA 0.8408 0.845 4h 30m 9.76 GiB
Paraphrase Concatenate rsLoRA 0.8532 0.8598 2h 22m 6.47 GiB
Paraphrase Concatenate Full 0.8974 0.9488 2h 41m 6.48 GiB
Similarity Siamese LoRA 0.2532 0.2861 17m 31s 3.74 GiB
Similarity Siamese DoRA 0.2559 0.2911 33m 4s 6.28 GiB
Similarity Siamese rsLoRA 0.3071 0.3485 17m 30s 3.74 GiB
Similarity Concatenate LoRA 0.8051 0.8286 16m 31s 4.03 GiB
Similarity Concatenate DoRA 0.8052 0.8298 30m 3s 6.53 GiB
Similarity Concatenate rsLoRA 0.8152 0.842 16m 25s 4.03 GiB
Similarity Concatenate Full 0.8746 0.986 18m 11s 4.24 GiB

Table 1: Comparison of fine-tuning methods for single-task model architectures. The best evaluation
metrics for each task are in bold.

to adapt specific weight matricies. The more modules LoRA adapts the greater the computational requirements
and runtime. The original LoRA paper only evaluated adapting the attention weights while we additionally
evaluate the adapting the dense linear layer weights. We note adapting only the attention weights saves almost
twice as much memory as adapting only the dense layers - although it does have 1-2 percentage points lower
accuracy.

Target Modules Dev Score Train Score Training Time Peak GPU Memory
all 0.4541 0.4878 17m 32s 2.62 GiB
all dense 0.445 0.4881 16m 20s 2.24 GiB
query, value 0.4378 0.4654 15m 1.82 GiB
query, key, value 0.426 0.4589 15m 25s 1.94 GiB

Table 2: This table compares tuning different network weight matrices with LoRA for the sentiment
task.

5.3.3 LoRA Rank

LoRA tunes model weight matricies by adding a low-rank delta matrix. The higher the rank, the closer LoRA
behaves to full fine-tuning. In this experiment we vary the LoRA rank and compare performance metrics. We
observe that changing the rank has limited impact the accuracy scores and peak memory usage. Using a lower
rank does reduce the training time but not by much. We conclude that choice of PEFT technique and target
modules are more impactful parameters to tune.

LoRA Rank Dev Score Train Score Training Time Peak GPU Memory
32 0.4614 0.4881 17m 56s 2.69 GiB
16 0.4469 0.4959 17m 37s 2.64 GiB
8 0.4541 0.4878 17m 31s 2.62 GiB
4 0.4523 0.4974 17m 23s 2.61 GiB
2 0.4369 0.4844 17m 19s 2.61 GiB
1 0.455 0.5056 16m 46s 2.61 GiB
Table 3: This table compares different LoRA update ranks for the sentiment task.

To maximize performance we decided to stick with full fine-tuning in the final model at the cost of higher
training time and memory usage.

5



5.4 Multi-task Training

In our experiments, multitask training yielded higher training scores but suffered from overfitting, particularly
for tasks with less data, such as the Sentiment and Similarity tasks. This overfitting resulted from the model
seeing examples from smaller datasets more frequently. Additionally, multitask runs were conducted with a
fixed learning rate of 0.0001, which may not have been optimal, contributing to poorer performance. In contrast,
single-task runs, which included a hyperparameter sweep for learning rates, showed better balance between
training and dev scores, indicating they did not suffer from overfitting. Future work should address these issues
by using task specific learning rates and regularization during multi-task training to mitigate data imbalance.

Task Loss Final Dev Score Final Train Score Training Time

Paraphrase, Similarity 1.6 Paraphrase: 0.7841
Similarity: 0.3871

Paraphrase: 0.8036
Similarity: 0.9925 2h 40m 53

Sentiment, Paraphrase 1.585 Sentiment: 0.4914
Paraphrase: 0.782

Sentiment: 0.9973
Paraphrase: 0.8041 2h 24m 22

Sentiment, Similarity 1.56 Sentiment: 0.4523
Similarity: 0.3623

Sentiment: 0.4698
Similarity: 0.4483 5m 4s

Sentiment, Similarity, Parphrase 1.485
Sentiment: 0.4977
Similarity: 0.3767
Paraphrase: 0.7762

Sentiment: 0.9947
Similarity: 0.9909
Paraphrase: 0.793

3h 25m 5s

Table 4: Result summary of the multi-task experiements, learning rate 0.0001, full finetuning, Siamese
Networks

5.5 Siamese Networks vs Input Concatenation

To test the hypothesis that inter-input attention is useful for paraphrase detection and similarity tasks, we compare
the baseline Siamese network with concatenating the input pairs with token type embeddings to distinguish which
input each token is from and feeding the concatenation through multiple transformer layers. The experiment uses
the same hyper-parameters for both architectures described in the training section. Below is a table summarizing
the results.

Task Architecture Dev Score Train Score Training Time
Paraphrase Siamese 0.7963 0.7972 3h 10m
Paraphrase Concatenation 0.893 0.8925 2h 51m
Similarity Siamese 0.3324 0.9425 18m 39s
Similarity Concatenation 0.8721 0.986 18m 46s

Table 5: Comparison of Siamese and Concatenation models for for paraphrase and similarity tasks.

Notice how the Siamese similarity model dramatically overfits to the training data and even then does not
achieves as high a training score as the input-concatenation model. This shows the input-concatentation model
has lower variance and greater generalization.

Interestingly the runtimes of both architectures are approximately the same. Because the number of operations
attention performs is quadratic in the sequence length, applying attention to concatenation of both inputs is twice
the number of operations as applying attention twice to each input individually. Specifically (2n)2 = 4n2 vs
2 ∗ n2 operations for the former vs the later. The extra attention lookups with queries from one input’s tokens
and keys from the others are computed in parallel the within-input attention lookups. In practice we observe the
Siamese network is slighly slower possibly because the model applies the BERT layers to the input pairs serially.

5.6 Batch Size

To identify appropriate batch sizes for each task, we run the following experiment: for each task we started with
batch size 8 and trained the a model for a few batches and checked the output of nvidia-smi NVIDIA (2016)
to monitor the GPU VRAM and how many threads where executing a kernel. Once the batch size was large
enough to reach ≈ 90% utilization for either resource we stopped increasing batch the size. We run experiments
on an NVIDIA T4 GPU with 16GB of RAM NVIDIA (2019). Based on the experiments we selected batch size
32 for all of the tasks.

5.7 Learning Rate

This experiment tested different learning rate on training loss. We aimed to pinpoint when changes in the
learning rate result in significant performance improvements, particularly the benefits of reducing the learning

6



Learning Rate Task Loss Final Dev Score Final Train Score Training Time
0.0001 Sentiment 1.6 0.2997 0.3179 10m 43s
0.0003 Sentiment 1.56 0.3497 0.3653 10m 14s
0.003 Sentiment 1.485 0.3906 0.4197 10m 22s
0.001 Sentiment 1.491 0.3688 0.3971 10m 26s
0.01 Sentiment 1.585 0.3742 0.4037 10m 15s
0.0003 Similarity 1.253 0.2481 0.2623 10m 55s
0.003 Similarity 1.41 0.2735 0.3013 10m 46s
0.001 Similarity 1.234 0.2655 0.2961 10m 51s
0.01 Similarity 1.527 0.2675 0.2984 10m 29s
0.0003 Paraphrase 0.6385 0.6485 0.6465 1h 55m 1s
0.003 Paraphrase 0.6309 0.5522 0.5512 1h 55m 12s
0.001 Paraphrase 0.7083 0.4852 0.4858 1h 54m 53s

Table 6: Result summary of the hyper-parameter sweep. The configurations with the highest dev
scores are in bold.

rate towards the end of the training phase. We did a hyperaparameter sweep for learning rate with the range
of values 0.0001, 0.0003, 0.001, 0.003, 0.01 and observed the models learned noticeably less for the smallest
learning rate.

5.8 Regularization

When the model is trained with too little regularization it will overfit. When it is trained with too much it
will underfit. To find the approximately optimal abount of regularization we ran a hyperparameter sweep with
increasing levels of weight decay until the dev scores peaked and started decreasing. Because the paraphrase
task has 30x more training data than the similarity and sentiment tasks and we only trained for a few epochs, we
did not observe overfitting to be a problem and did not experiment with weight decay for paraphrase.

Task Weight Decay Dev Score Train Score
Sentiment 1 0.5241 0.9346
Sentiment 0.3 0.5223 0.9568
Sentiment 0.1 0.5268 0.9484
Sentiment 0.05 0.5204 0.9428
Similarity 4.5 0.8804 0.9848
Similarity 4 0.8807 0.9852
Similarity 3 0.8798 0.9854
Similarity 1 0.8775 0.9859

Table 7: Dev scores for varying levels of weight decay.

5.9 Other experiments

Hidden Layers Experiment: We conducted a hyper-parameter sweep for the number of hidden layers in the
task specific MLP and found that adding hidden layers made the model overfit more. The BERT layers already
have enough model capacity to overfit the data, so we decided to omit hidden task-specific layers from the rest
of the experiments.

Dropout Experiment: Additionally, we investigated the impact of varying dropout rates within the range of
0.1 to 0.6 for each task. The differences in performance were negligible. This outcome suggests that, within
the scope of our experiments, the model’s existing regularization strategies are already sufficient or that the
task-specific characteristics do not heavily depend on dropout for achieving optimal performance.

Epoch Experiment: Lastly, we trained each task for a different number of epochs and observed their graphs to
determine where the dev score peaked. Generally, there was not any significant improvement from our default
10 epochs for similarity and sentiment and 2 for paraphrase (due to the abundance of data). However, we did
notice the highest scores would occur around epoch 11 for similarity and around epoch 3 for paraphrase (with
lower scores in neighboring epochs 1, 2, and 4).

5.10 Best Models

In our study, the best models trained for 10 epochs (4 for paraphrase). The accompanying table documents the
specific epoch during which the highest development score was recorded for each model. This data is indicative

7



of the correlation between the number of epochs and peak model performance. Additionally, all of our best
models were subject to a 0.3 dropout probability.

Type Task Dev
Score

Train
Score

Weight
Decay

Finetune Epoch Architecture

Best Sentiment 0.5268 0.9484 0.1 Full 3 Single-Task
Baseline Sentiment 0.3906 0.4197 0.01 N/A 10 Single-Task
Best Similarity 0.8816 0.9923 4 Full 11 Single-Task Concatenation
Baseline Similarity 0.2735 0.3013 0.01 N/A 10 Single-Task Siamese
Best Paraphrase 0.9004 0.9789 0.01 Full 3 Single-Task Concatenation
Baseline Paraphrase 0.6485 0.6465 0.01 N/A 2 Single-Task Siamese

Table 8: Scores and hyperaparameters for the best models and the baselines.

5.10.1 Test Scores
• SST test accuracy: 0.535

• Paraphrase test accuracy: 0.902

• STS test correlation: 0.870

• Overall test score: 0.791

6 Analysis

Paraphrase

True Positives (TP): 13494 (33.38%)
True Negatives (TN): 22610 (55.93%)
False Positives (FP): 2927 (7.24%)
False Negatives (FN): 1398 (3.46%)

In this project’s evaluation of BERT fine-tuning methods for
paraphrase detection, full fine-tuning proved most effective, con-
sistently achieving the highest development and training scores
across various experiments. Despite its greater computational
demand, full fine-tuning surpasses parameter-efficient methods
like LoRA, DoRA, and rsLoRA by better utilizing BERT’s full

representational capacity to discern nuanced textual differences and similarities crucial for paraphrase detection.
Extensive tests revealed that while parameter-efficient techniques generally minimize overfitting, they fall short
in accuracy and robustness compared to full fine-tuning, especially in complex tasks that benefit from deep
model tuning. Moreover, the focus on single-task training over multi-task setups allowed for more precise model
adjustments, enhancing performance and pointing to the necessity of choosing fine-tuning strategies that match
specific task demands and data characteristics.

Sentiment

Figure 2: Sentiment Confusion Matrix

The confusion matrix for sentiment analysis shows
the most common errors are predicting the sentiment
label adjacent to the true class (e.g. 4 stars instead of
5 stars for a movie review), suggesting minor inaccu-
racies rather than significant misunderstandings. This
shows that even when the predictions are incorrect
they are still somewhat reasonable, indicating a nu-
anced understanding of sentiment gradations by the
model.

From the confusion matrix we also see classes 1 and 3
are more frequent in the dataset than the other classes.
The prevalence of errors in specific classes points to
potential imbalances in the dataset that might affect
the model’s learning.

Moreover, similar to paraphrase, full fine-tuning sur-
passed other methods like LoRA and DoRA in the
sentiment analysis task, demonstrating its superior
ability to utilize BERT’s full representational capac-
ity.

Sentiment We observed our most significant improvement in sentiment model accuracy upon implementing
regularization, particularly through weight decay. This approach effectively mitigated overfitting, enabling the

8



model to generalize better across unseen data. The incorporation of weight decay into our training regimen
was crucial in refining the model’s performance, highlighting its importance as a regularization strategy in deep
learning models. Overall, the application of weight decay not only boosted accuracy but also contributed to a
more stable and consistent model performance across various test scenarios.

7 Conclusion

Our main findings indicate that the concatenation approach outperforms Siamese networks due to reduced
overfitting and the cross-input connections. Parameter-efficient fine-tuning methods such as LoRA and its
variants modestly decrease both runtime and accuracy, with rank-stabilized LoRA (rsLoRA) emerging as the
most effective variant. These methods are less prone to overfitting due to having fewer trainable parameters.
Despite the benefits of LoRA and its variants, full fine-tuning proved more suitable for our project as the
additional runtime was minimal and resulted in a slight performance improvement.

However, our study has limitations. Specifically, training for more epochs could potentially enhance accuracy
further. Additionally, we faced challenges with multi-task training, primarily due to overfitting in tasks with
limited data. This prevented us from obtaining a robust multi-task model. Future work should address these
limitations by optimizing the training duration and refining techniques to manage data imbalance in multi-task
learning scenarios.

8 Ethical Considerations

8.1 Biases In The Data

As with any model of this type, their is the risk of biases in the data affecting how the model performs and treats
different subsections of people. For example, if the training data contains more or less representations of specific
dialects, for example, it might not represent colloquialism in British English or Indian English. For instance in
British English "peak" can mean both terrible and amazing, depending on context. However, a model trained on
American English may not pick up on the fact that it could mean both of those. Another example would be the
model not picking up on certain phrases or expressions that might mean different things in different regions. A
classic example is the word for a sweet carbonated beverage, which can also be called "soda", "pop", "cola",
"soda pop", etc. A similarity or paraphrase model may be less accurate than it could be if it does not have all of
these variants in its training data.

8.2 Transparency

Another common issue with AI models, including this one, is transparency. Users often find it challenging to
understand what data and techniques have been used to develop the model unless the creators provide detailed
information. To address this, comprehensive documentation of the model’s architecture, training process, and
decision-making criteria should be provided. This includes a clear explanation of the data sources, pre-processing
steps, and the rationale behind the chosen algorithms. Additionally, developing user-friendly interfaces that offer
straightforward explanations of the model’s predictions can help foster transparency and trust. For instance,
using techniques like attention visualization can show users which parts of the input data the model focuses on,
making the decision-making process more understandable. Regular updates and open channels for feedback can
also enhance transparency and ensure the model remains aligned with user needs and ethical standards.

References
Lukas Biewald. 2020. Experiment tracking with weights and biases. https://www.wandb.com/. Software

available from wandb.com.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022. Simcse: Simple contrastive learning of sentence embed-
dings.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov. 2012.
Improving neural networks by preventing co-adaptation of feature detectors.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large language models.

Andrej Karpathy. 2019. A recipe for training neural networks. https://karpathy.github.io/2019/04/
25/recipe/.

9

https://www.wandb.com/
https://www.wandb.com/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/2106.09685
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/


Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. 2024. Dora: Weight-decomposed low-rank adaptation.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization.

NVIDIA. 2016. Nvidia system management interface program. https://developer.download.nvidia.
com/compute/DCGM/docs/nvidia-smi-367.38.pdf. Accessed: May 23, 2024.

NVIDIA. 2019. Nvidia t4 tensor core gpu. https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf. Accessed: May 23, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2020. How to fine-tune bert for text classification?
https://arxiv.org/pdf/1905.05583.

Zoch, Kemel, and Salakhutdinov. 2015. Siamese neural networks for one-shot image recognition. https:
//www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf.

A Appendix (optional)

10

http://arxiv.org/abs/2402.09353
http://arxiv.org/abs/1711.05101
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
http://arxiv.org/abs/1908.10084
https://arxiv.org/pdf/1905.05583
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

	Key Information to include
	Contributions

	Introduction
	Related Work
	Approach
	Model Architectures
	Objective Functions
	Training

	Experiments
	Data
	Evaluation Method
	Fine-Tuning
	LoRA Variants
	Target Modules
	LoRA Rank

	Multi-task Training
	Siamese Networks vs Input Concatenation
	Batch Size
	Learning Rate
	Regularization
	Other experiments
	Best Models
	Test Scores


	Analysis
	Conclusion
	Ethical Considerations
	Biases In The Data
	Transparency

	Appendix (optional)

