
From BERT to Brilliance: An Analytical Approach to
Advancing Multitask Learning for NLP

Stanford CS224N Default Project

Akea Pavel
Department of Computer Science

Stanford University
apavel17@stanford.edu

Adrian Mendoza-Perez
Department of Computer Science

Stanford University
mendy@stanford.edu

Abstract

Pre-trained language models like BERT have revolutionized natural language
processing tasks, yet their ability to grasp nuanced language features remains an
ongoing challenge. In this paper, we present a series of techniques to significantly
improve the performance of a pre-trained language model, minBERT, on three
downstream NLP tasks: sentiment analysis, paraphrase detection, and semantic
textual similarity. Specifically, we modify Sentence-BERT (SBERT), a version of
BERT that employs siamese and triplet network structures to derive semantically
meaningful sentence embeddings that can be compared using cosine similarity. Our
approach incorporates a mixture of cross-encoding and bi-encoding BERT’s input
sentences, employs MNRL to enhance the model’s ability to distinguish between
similar and dissimilar pairs, and applies Ordinal Log-Loss to mitigate errors with
adjacent boundaries. These combined strategies yield substantial improvements in
multitask learning ability, achieving a overall test score of 0.650 on the test set and
surpassing the SBERT baseline.

1 Key Information to include

Our mentor is Johnny Chang (cjohnny@stanford.edu) and we are not sharing this project with
any other classes nor do we have any external collaborators. Akea and Adrian worked together to
implement the initial BERTBase model. Akea then implemented the S-BERT-inspired model and
Adrian followed up by implementing Multiple Negatives Ranking Loss and Ordinal Log-Loss. Akea
and Adrian both contributed equally towards writing the paper.

2 Introduction

In recent years, significant advancements in natural language processing (NLP) have been driven
by pre-trained models such as BERT (Devlin et al., 2019). However, applying BERT to practical
tasks often requires fine-tuning for specific downstream applications, which presents challenges like
computational inefficiency and poor embeddings. BERT’s method of processing sentence pairs by
feeding both sentences into the network simultaneously results in a dramatic increase in computation.
For tasks like semantic textual similarity (STS), this approach becomes computationally prohibitive,
requiring around 50 million inference computations for 10,000 sentences, translating to roughly 65
hours on a modern GPU (Reimers et al., 2019). Moreover, BERT’s approach of averaging the output
layer (known as BERT embeddings) or using the output of the first token (the [CLS] token) often
results in poor sentence embeddings, which are frequently worse than those obtained by averaging
GloVe embeddings (Pennington et al., 2014).

To address these challenges, we modify Sentence-BERT (SBERT), a BERT variant designed to derive
semantically meaningful sentence embeddings using siamese and triplet network structures, to im-
prove BERTBase performance in sentiment classification, paraphrase detection, and semantic textual

Stanford CS224N Natural Language Processing with Deep Learning



similarity. SBERT efficiently compares embeddings using cosine similarity, reducing BERTBase
computational complexity, improving its sentence embeddings, and cutting down its processing
time for tasks like semantic similarity search from hours to seconds. We also propose a multitask
learning strategy that incorporates several key techniques to improve SBERT, such as Bi-encoding
and Cross-encoding to improve sentence embeddings; Multiple Negatives Ranking Loss (MNRL)
to enhance the model’s ability to distinguish between similar and dissimilar pairs, crucial for tasks
like paraphrase detection and STS; Ordinal Log-Loss to enhance the boundaries between adjacent
labels. Our goal is to create a model that utilizes the power of pre-trained BERT while addressing the
unique challenges of multitask learning. Through our experiments and analysis, we showcase the
effectiveness of our approach, highlighting the strengths and weaknesses of our model.

3 Related Work

Our work begins with an implementation of the BERTBase introduced by Devlin et al. (2019), which
implements a transformer-based model capable of achieving state-of-the-art results on a range of
natural language processing tasks through a novel approach of bidirectional training. Despite its
significant contributions, BERT exhibits notable limitations, particularly in handling domain-specific
language and requiring substantial computational resources for training and fine-tuning. These
limitations provide the starting point for our enhancements aimed at optimizing the efficiency and
applicability of the model on three downstream tasks, sentiment analysis, paraphrase detection, and
semantic textual similarity.

To address some of BERT’s limitations, particularly its performance in semantic similarity assessment,
we drew from ideas implemented within Sentence-BERT (SBERT) by Reimers and Gurevych (2019).
SBERT modifies the original BERT architecture to produce fixed sentence embeddings that can be
compared using cosine similarity. This adaptation reduces the computational cost for tasks involving
semantic comparisons of sentences, thus alleviating the need for pairwise comparisons inherent in
BERT’s original framework.

We continued to fine-tune our model through an evaluation of encoding strategies, testing the
effectiveness of cross-encoding as implemented in the original BERT architecture, against the cosine
similarity approach used by SBERT. Cross-encoding allows for the processing of sentence pairs
together in a single pass. This can allow the model to detect inter-sentence nuances directly. Cosine
similarity assessments involve the separate processing of each sentence, and focusing instead on
efficiency, potentially missing out on nuance within sentence pairs (Reimers and Gurevych, 2019).

Furthermore, to refine our approach for the tasks involving sentence pairs, paraphrase detection and
semantic textual similarity, we integrated the Multiple Negatives Learning Rank (MNLR) method
described by Henderson et al. (2017). This technique employs multiple negative samples, enhancing
the model’s discriminatory capabilities. Within a single batch, there is a single positive pair and
multiple negative pairs. MNLR aims to minimize the approximated mean negative log probability of
the data, optimizing the similarity measure between the positive pair and maximizing the differences
with the negative pairs. We utilized cosine similarity as our scoring function in this process, using its
effectiveness in measuring semantic similarity.

Additionally, to improve the adjacent boundaries between labels in the sentiment classification task,
we implemented Ordinal Log-Loss (OLL). Traditional cross-entropy loss does not fully capture the
ordinal nature of the labels. Therefore, we explored OLL as introduced by Castagnos et al. (2022),
which not only encourages correct predictions but also penalizes predictions that are far from the true
label.

4 Approach

4.1 Baseline

For our default model, we implemented Bidirectional Encoder Representations from Transformers
(BERT) with pre-trained weights.

2



4.1.1 BERT Implementation

We implemented the BERT model, focusing on the multi-head self-attention and transformer layers
as described in the original BERT paper. The bidirectional encoder representations allow the model
to capture valuable contextual information from both directions. BERT consists of 12 transformer
layers, each with 768 hidden units and 12 attention heads, designed to maintain a balance between
efficiency and performance. The attention mechanism is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

We initialized BERT with pre-trained weights and fine-tuned it on the SemEval dataset to adapt it for
our specific tasks.

4.1.2 Adam Optimizer

To train our model efficiently, we implemented the Adam optimizer, which computes adaptive
learning rates for different parameters by estimating the first and second moments of the gradients.
The optimizer adjusts the learning rate for each parameter based on these estimates. It also includes
bias correction to ensure stability in the early stages of training, and a weight decay regularization
technique to prevent overfitting. The update rule for the Adam optimizer is given by:

θt ← θt−1 − α · mt/(1− βt
1)√

vt/(1− βt
2) + ϵ

4.2 S-Bert With Additional Layers

Inspired by the architecture implemented in S-BERT, we wanted to evaluate how different pooling
methods and cosine similarity fine-tuning could make an improvement in our downstream tasks as
was demonstrated by Reimers and Gurevych (2019).

4.2.1 Sentiment Analysis Architecture

We used a simple architecture for sentiment analysis, inputting a tokenized sentence into the BERT
model, producing a 768-dimensional embedding as shown in Figure 3 in the Appendix. The key
[CLS] token embedding, representing the entire sentence, is chosen with a CLS pooling strategy. This
embedding then goes through dropout for regularization, passes through a linear projection layer to
output unnormalized sentiment probabilities across five classes, and is normalized using the sigmoid
function. Then, the cross-entropy loss is computed with true labels. Finally, a prediction is made by
taking the argmax of the normalized probabilities.

4.2.2 Semantic Textual Similarity Architecture

Figure 1: Semantic Textual Similarity Architecture

For the STS architecture, we were inspired by the Siamese network structure implemented in S-BERT
by Reimers and Gurevych (2019). In this process, each input is fed to the same model in order to
produce two embeddings, which are then averaged with mean pooling. Then, we calculate the cosine

3



similarity between the averaged embeddings, normalize the output with a ReLU function to change
the range to [0, 1], then multiplied by 5 to scale to [0, 5] to ensure predictions fall in the desired
range.

4.2.3 Paraphrase Detection Architecture

Figure 2: Paraphrase Detection Architecture

As paraphrase detection combines parts of both sentiment analysis and STS, we were inspired by
S-BERT to create a architecture using use a linear projection layer with dropout to determine the
binary classification of whether two input sentences are paraphrases. The input to this layer includes
the embeddings of both sentences, their cosine similarity, and their absolute element-wise difference.
The weight matrix of the projection layer is dimensionally W ∈ R3×768+1×1. To generate a binary
prediction, the output from the linear layer is normalized with a sigmoid function and rounded to the
nearest integer.

4.3 Cross-Encoding, Cosine Similarity, and Bi-Encoding

As STS and Paraphrase Detection are sentence-pair tasks, this can present a challenge for the
BERT model, which is traditionally limited to processing single input sequences. To try to improve
performance on these sentence-pair tasks, we explored the concepts of cross-encoding and bi-encoding
with cosine similarity, as mentioned in the architecture in section 4.2. The alternative approach of
cross-encoding, used by Devlin et al. (2019) in the original BERT model, merges each input sequence
with a [SEP] token before processing. Then, a classification/regression layer is used on the output
embedding for a prediction as shown in Figure 4a in the Appendix. As opposed to Figure 4b in the
Appendix, which uses the mean-pooled BERT embeddings for two input sequences and calculates
their cosine similarity. The similarity score is then normalized using a ReLU activation and scaled by
a factor of 5 before being returned.

4.4 Multiple Negative Loss Ranking (MNRL) for Paraphrase

To improve performance particularly on paraphrase detection, due to the sentence-pair structure,
we implemented the Multiple Negatives Ranking Loss (MNRL) as referenced in Henderson et al.
(2017). This loss function aims to minimize the distance between embeddings of similar sentences
while maximizing the distance between embeddings of dissimilar sentences. The objective function
is defined as:

J(x, y, θ) = − 1

K

K∑
i=1

logPapprox(yi|xi) = −
1

K

K∑
i=1

S(xi, yi)− log

 K∑
j=1

eS(xi,yj)


4.5 Ordinal Log-Loss for Fine-Grained Sentiment Analysis

Given that the initial loss function for sentiment analysis was the cross-entropy loss function,
there was no accounting for the ordered nature of the sentiment classes, treating the task solely
as categorical classification. In this case, Ordinal Log-Loss was helpful in penalizing prediction
not only based off classification accuracy, but also by how far off they were in terms of order. We
implemented the Ordinal Log-Loss as described by Castagnos et al. (2022) and took inspiration from

4



glanceable-io, which is shown here:

Given a set of classes C1, C2, . . . , CN , and the ordinal predictions P = (p1, . . . , pN ) for
these classes, the loss is defined as:

LOLL(P, y) = −
N∑
i=1

log(1− pi)d(y, i)
α (1)

where d(y, i) represents the distance between the true label y and the class Ci, and α is a hyper-
parameter that adjusts the sensitivity of the loss to the distance between the predicted and actual
labels.

5 Experiments

5.1 Data

We used four datasets for our experiments: the Stanford Sentiment Treebank (SST) for sentiment
classification, the Quora Question Pairs dataset for paraphrase classification, the SemEval Semantic
Textual Similarity (STS) Benchmark dataset for similarity classification, and the positive sentence
pairs of the Quora Question Pairs for MNRL. The SST dataset contains sentences from movie reviews
with sentiment labels, split into 8,544 training, 1,101 validation, and 2,210 test examples. The Quora
dataset contains 404,298 question pairs with labels indicating whether they are paraphrases, split into
283,010 training, 40,429 validation, and 80,859 test examples. The SemEval STS dataset contains
8,628 sentence pairs with similarity scores, split into 6,040 training, 863 validation, and 1,725 test
examples. The positive sentence pairs dataset contains 13073 training examples.

5.2 Evaluation method

To evaluate our model, we used the metrics as defined in the project handout. For the sentiment
analysis and paraphrase detection tasks, we used a simple accuracy score to compare the true and
predicted labels. For the semantic textual similarity task, we employed the Pearson correlation
coefficient as the evaluation metric, which measures the linear correlation between the true and
predicted similarity values.

5.3 Experimental details

All of our training used the BERTBase with provided pre-trained weights. For all experimentation,
the learning rate was set to 2× 10−5, the hidden layer dropout probability was 0.3. All models were
trained using an AdamW optimizer, which had the following parameters: β1 = 0.9, β2 = 0.999, and
a weight decay regularization of λ = 0.01. We trained our model for 10 epochs using NVIDIA T4
GPUs for 3 tasks: SST Accuracy, QQP Accuracy, and STS Correlation.

5.4 Results

Table 1: Dev performance of different model architectures

Architecture SST Accu-
racy (Dev)

QQP Accu-
racy (Dev)

STS Correla-
tion (Dev)

Overall Dev
Score

Bert Baseline (Cross-encoding) 0.305 0.665 0.169 0.518
Bert Baseline + Add. Layers 0.334 0.671 0.328 0.557
Bert Baseline + Add. Layers + MNRL 0.350 0.698 0.330 0.571
SBERT (Bi-encoding) 0.336 0.738 0.684 0.639

Our first experiment, compared different baseline model architectures. We tried 4 approaches:
BERTBase, BERTBase with additional layers, BERTBase with additional layers and MNRL, and
finally SBERT. Based on the results of Table 1, adding additional hidden layers, greatly improved
performance, especially on the semantic textual similarity task, bringing accuracy from 0.169 to
0.328. Moreover, the implementation of Multiple Negative Ranking Loss (MNRL) in addition to

5

https://github.com/glanceable-io


the additional hidden layers and cross encoding, further improved all three tasks, with an overall dev
score increasing from 0.557 to 0.571. However, the improvement was minimal, and after taking a
closer look at our training results we noticed a lot of overfitting. To combat this issue we decided to
implement SBERT, which improved the model greatly across all tasks as expected from Section 3.
However, since STS and Paraphrase Detection are sentence-pair tasks, we wanted to see the effects
bi-encoding and cross-encoding on the dev results as mentioned in section 4.3.

Table 2: Dev performance of different sentence encoding architectures with MNRL

Architecture SST Accuracy
(Dev)

QQP Accuracy
(Dev)

STS Correla-
tion (Dev)

Overall Dev
Score

SBERT + Bi-enc. + MNRL 0.309 0.729 0.662 0.612
SBERT + Cross-enc. + MNRL 0.311 0.779 0.644 0.615

With our second experiment, we aimed to improve SBERT’s performance across all three downstream
tasks, particularly with QQP and STS because they are sentence-pair tasks. To do so, we started
with 2 approaches: SBERT with bi-encoding for both QQP and STS and using MNRL, SBERT
with cross-encoding for both QQP and STS, and using MNRL. We discovered that SBERT with
MNRL achieves the highest QQP Dev Accuracy score with cross-encoding and the highest STS Dev
Correlation with bi-encoding. This isn’t what we expected as the SBERT baseline model performs
better with bi-encoding for both sentence-pair tasks according to Reimers et al. (2019) and our data
in Table 1. This indicates that SBERT cross-encoding captured the nuance between sentence pairs
more accurately for QQP when combined with MNRL. This is likely because cross-encoding allows
the model to jointly consider both sentences in a pair, leading to a more nuanced understanding and
better identification of paraphrases, while bi-encoding might be more effective for STS due to its
ability to handle semantic similarity through separate sentence representations. Thus, we transitioned
to a model that used cross-encoding for QQP and bi-encoding for STS.

Table 3: Dev performance of mixed sentence encoding architectures and the affect of MNRL

Architecture SST Ac-
curacy
(Dev)

QQP Ac-
curacy
(Dev)

STS
Corre-
lation
(Dev)

Overall
Dev
Score

SBERT + Para. = Cross-enc. & Sim. = Bi-enc. 0.358 0.772 0.660 0.653
SBERT + Para. = Cross-enc. & Sim. = Bi-enc. + MNRL 0.322 0.765 0.653 0.638

With our third experiment, we aimed to determine the effect of MNRL on our model and if using
cross-encoding for the QQP task and bi-encoding for the STS task made any improvements. We
tried 2 approaches: SBERT with cross-encoding for QQP and bi-encoding for STS using MNRL
and SBERT with cross-encoding for QQP and bi-encoding for STS without using MNRL. For the
model including MNRL, the improvements weren’t as drastic as we had expected with the SST
Dev accuracy only improving by around 0.11, STS Dev Correlation decreasing by 0.009, and QQP
decreasing by 0.014 as compared to the best results of Table 2. This is likely because the mixed
encoding approach did not harmonize well with the MNRL’s loss function, potentially leading to
suboptimal gradient updates during training and, consequently, less effective feature learning for
these tasks. This is further exemplified by the results of Table 3 where the model without MNRL
outperformed the model with MNRL in every Dev set.

For our final experiment, we wanted to improve the SST accuracy so we implemented OLL on the
SBERT model with cross-encoding for QQP and bi-encoding for STS without using MNRL. Our
final model implementation achieved the following scores on the dev set and test set as displayed
in Table 4. The following results were expected because OLL addresses the ordinal nature of the
sentiment classification task by explicitly penalizing predictions that are farther from the true labels
to better capture the nuances of sentiment analysis. This alignment with the ordinal structure of
sentiment data contributed to more accurate predictions, improving the SST accuracy.

6



Table 4: Dev and Test performance of mixed sentence encoding architectures with OLL

Architecture SST Ac-
curacy

QQP
Accu-
racy

STS
Corre-
lation

Overall
Score

(Dev) SBERT + Para. = Cross-enc. & Sim. = Bi-enc. + OLL 0.385 0.772 0.660 0.662
(Test) SBERT + Para. = Cross-enc. & Sim. = Bi-enc. + OLL 0.397 0.772 0.624 0.660

6 Analysis

6.1 Sentiment Analysis

Despite integrating various extensions into our base BERT model, there was minimal improvement
when considering the Sentiment Analysis task. However, these results may be attributable to the
nature of each of the extensions that we integrated. Our largest improvements were seen through the
implementation of the S-BERT-inspired architecture and the Multiple Negative Ranking Loss. The
S-BERT-inspired architecture, which is inherently designed for tasks involving comparisons between
sentence pairs due to its implementation of bi-encoding and cosine similarity fine-tuning, would not
have made much of an improvement in the sentiment analysis task. MNRL, which is mainly aimed
towards differentiating between examples, also did not perform well on the sentiment analysis task
likely due to the absence of a comparative element within the task. Overall, these results demonstrated
the need for specific extension and adaptation for the sentiment analysis task. As such, we aimed to
implement Ordinal Log-Loss mainly to improve model performance on sentiment analysis, a task
where the ordering of the sentiment classes has significant meaning. When analyzing the results of
the Ordinal Log-Loss implementation, we saw moderate success in improving model performance on
sentiment analysis.

6.2 Paraphrase Detection

Paraphrase detection was a task that our model improved fairly significantly, with our baseline model
receiving an accuracy score of 0.558, and the best extension of our model receiving an accuracy score
of 0.779. Implementing the S-BERT architecture, which focused on developing efficient processes
for analyzing sentence pairs and utilized cosine similarity for fine-tuning, was highly effective in
creating more robust embedding pairs. This method not only improved the accuracy of detecting
paraphrases by focusing on semantic similarity but also enhanced the model’s efficiency by allowing
pre-computed embeddings to be reused in multiple comparisons. Furthermore, MNRL, which aims
to optimize similarity between positive pairs while increasing the difference between negative pairs,
significantly improved the development of pairwise sentence embeddings.

In evaluating our model’s performance on paraphrase detection, we saw that the model had difficulty
with sentence pairs that were highly similar in their words but differed in key details. These were often
misclassified as paraphrases. For example, the questions "Is it better to bathe with cold water during
winter or with hot water?" and "Is there a better time to drain your water heater? Can you do it during
the winter?" were incorrectly identified as paraphrases. Despite their surface similarity in discussing
water and winter conditions, these questions address fundamentally different topics. This and similar
examples demonstrate difficulty in understanding more specific semantic differences within sentences
paired with similar syntax. For future research, exploring advanced attention mechanisms could help
to more effectively discern nuances, leading to more accurate paraphrase detection

6.3 Semantic Textual Similarity

Similar to the task of paraphrase detection, our model also improved significantly on the task of
semantic textual similarity. Our model started with a Pearson correlation score of 0.169, indicating
poor performance. As such, enhancing the baseline model was a key focus. By adding another hidden
layer, cross-encoding with [SEP], and MNRL, we increased our score to 0.330. This improvement
likely stems from the model’s enhanced ability to capture nuanced similarities through the additional
layer and more sophisticated encoding of sentence pairs. However, the most significant improvement
for this task was the adjustment of our model architecture, which used bi-encoding and was inspired
by the architecture implemented by S-BERT, which brought our score to 0.684. This is due to the

7



more sophisticated sentence embedding techniques, which work to better capture deep semantic
relationships. This improvement in semantic textual similarity was expected when implementing this
architecture, as the original authors had seen similar improvements for similar NLP tasks.

When reviewing incorrectly labeled examples for this task, we found that we had similar instances
of model misclassification as in the paraphrase detection task. Sentences with similar structures but
different meanings were often misclassified as similar, when they, in reality, were not. For example,
"Russia, China Veto UN Resolution on Syria" and "Russia, China veto UN resolution on Syria
killings" were misclassified to have more similar meaning, likely due to surface-level similarity, and
incorrect due to the deeper difference in meaning between the two sentences.

7 Conclusion

In this paper, we presented an approach to enhance the BERT model’s performance in multitask
learning by incorporating various encoding strategies and specialized loss functions. Our main
successes were observed in paraphrase detection and semantic textual similarity tasks, validating
the effectiveness of S-BERT architectures, Multiple Negatives Ranking Loss (MNRL), and Ordinal
Log-Loss (OLL) implementations. The application of bi-encoding for semantic textual similarity
and cross-encoding for paraphrase detection optimized the model. Implementations of MNRL and
S-BERT architectures improved sentence pair embeddings, while OLL enhanced sentiment analysis
by adjusting the adjacent boundaries between labels. However, our work has limitations. MNRL
was unable to successfully improve the model while utilizing mixed sentence encoding architectures.
Moreover, our model overfit on the smaller SST and STS datasets. Lastly, dataset diversity was
limited, suggesting future work should incorporate a broader range of data sources.

8 Ethics Statement

The development of our miniBERT model for NLP tasks raises several ethical issues and significant
societal risks. One societal risk is the possibility of biased outputs due to imbalanced data repre-
sentation. Our model isn’t trained on a diverse set of datasets that represent a diverse set of groups.
Specifically, we used three main datasets for our experiments: the Stanford Sentiment Treebank (SST)
for sentiment classification, the Quora Question Pairs dataset for paraphrase classification, and the
SemEval Semantic Textual Similarity (STS) Benchmark dataset for similarity classification. The SST
dataset, with sentences from movie reviews, does not capture the full range of sentiment expressions
across different cultures and languages. The Quora dataset, while extensive, primarily represents
English-language questions, potentially missing nuances from other languages, cultures, and contexts.
The SemEval STS dataset, despite its focus on semantic similarity, is limited in its cultural and
linguistic diversity. Therefore, in the context of similarity analysis, sentiment analysis or paraphrase
detection, this could lead to unfair or biased assessments of minority groups, languages, or dialects
because the training data did not include sufficient representation of these groups, thereby reinforcing
societal prejudices. Another ethical concern about the usage of NLP models like miniBERT is their
potential for automating content moderation and censorship, which could disproportionately impact
marginalized groups. For example, if a government or corporation uses miniBERT to monitor and
filter online content, there is a risk that these models could misinterpret context or cultural nuances,
leading to the unjust silencing of voices from marginalized communities. This can occur under the
guise of maintaining public safety or upholding community standards, ultimately stifling free speech
and exacerbating existing inequalities.

To address these issues, many mitigation measures can be implemented. To overcome data bias, we
can use multiple datasets that cover a variety of linguistic, demographic, and cultural contexts. This
entails not just gathering data from a variety of languages and dialects, but also ensuring that it reflects
diverse socioeconomic, gender, and ethnic origins. You can also have multiple people interact and test
the miniBert model, ensuring that is accessible and welcoming to a diverse audience. Furthermore, to
mitigate issues of improper content moderation, we can make open-source datasets and architecture
for peer evaluation to limit individual bias; however, we must make sure to not disclose the model’s
weights so that people can’t take advantage of the model. We could also implement a method in
which decisions by the model are explained by the model, to hopefully provide a clearer picture of
the potential biases in the model.

8



9 References

[1] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2018. URL: https://arxiv.org/abs/1810.04805 (visited on 01/01/2022).

[2] Matthew Henderson et al. Efficient Natural Language Response Suggestion for Smart Reply.
2017. URL: https://arxiv.org/abs/1705.00652 (visited on 01/01/2022).

[3] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank”. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2013.

[4] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings Using Siamese BERT-
Networks. 2019. URL: https://arxiv.org/abs/1908.10084 (visited on 01/01/2022).

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014. URL:
https://arxiv.org/abs/1412.6980 (visited on 01/01/2022).

[6] François Castagnos, Martin Mihelich, and Charles Dognin. “A Simple Log-Based Loss Function
for Ordinal Text Classification”. In: Proceedings of the 29th International Conference on
Computational Linguistics. International Committee on Computational Linguistics. Gyeongju,
Republic of Korea, 2022, pp. 4604–4609.

[7] Glanceable-io. “Ordinal Log Loss - A simple loss function for Ordinal Classification”. In:
(2023). URL: https://github.com/glanceable-io.

9

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1412.6980
https://github.com/glanceable-io


10 A Appendix

Figure 3: Sentiment Analysis Architecture

Figure 4: Encoding methods for multiple input sentences

10


	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	BERT Implementation
	Adam Optimizer

	S-Bert With Additional Layers
	Sentiment Analysis Architecture
	Semantic Textual Similarity Architecture
	Paraphrase Detection Architecture

	Cross-Encoding, Cosine Similarity, and Bi-Encoding
	Multiple Negative Loss Ranking (MNRL) for Paraphrase
	Ordinal Log-Loss for Fine-Grained Sentiment Analysis

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Sentiment Analysis
	Paraphrase Detection
	Semantic Textual Similarity

	Conclusion
	Ethics Statement
	References
	A Appendix

