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Abstract

LLMs have learned a surprising amount of traits that are considered the hallmarks
of human cognition - such as the ability to plan, reason, and take-on personas. In
this vein, recent work (Zhou et al., 2023; Drozdov et al., 2022) showed that an LLM
can be prompted to solve systematic generalization benchmarks such as SCAN
(Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020) purely in-context
i.e. without ever any gradient update propogating task information into the model.
The prompting strategy they develop can be broadly characterized as a method to
decompose the grammar into simple exemplars, and showing the model both the
exemplars and the rules to combine these exemplars. On its face, these findings are
remarkable, the fact that LLMs are able to perfectly systematically generalize zero-
shot is evidence that these models are a leap toward human cognition. However,
through this project, we show preliminary work that these findings cannot be
interpreted as suggesting that LLMs can generalize perfectly systematically. We
argue that the prompting methods developed by Zhou et al. (2023) and Drozdov
et al. (2022) render the systematic generalization benchmarks they evaluate on an
invalid measure of the intrinsic systematicity possessed by the LLM. Toward this,
we present a simple benchmark called Intrinsic Systematicity Evaluation (ISE)
and show that modern LLMs upto 70-B parameters struggle on ISE.
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2 Introduction

Systematicity has been considered one of the key inductive biases that underlie human intelligence.
It refers to the ability to recompose previously seen concepts into novel combinations. Paraphrasing
from Lake and Baroni (2018), consider the thought experiment where a person knows the meaning
and usage of words such as “twice,” “and,” and “again,” once she learns a new verb such as “to dax”
she can immediately understand or produce instructions such as “dax twice and then dax again.” This
human ability to generalize zero-shot to novel combinations allows for incredibly sample efficient
learning and information acquisition. During the first AI revolution, Fodor and Pylyshyn (1988)
famously argued that Deep Neural Networks could not be viable models of human cognition as
they failed at demonstrating this key behavior. Furthermore, multiple recent work suggest that the
transformer model itself struggles to learn systematic representations (Chakravarthy et al., 2022; Wu
et al., 2024).
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Despite these findings, scaling the transformer architecture to predict the next word on an internet-
sized corpus of text, has yielded a model that are capable of sophisticated behavior such as producing
coherent reasoning chains, writing computer code, and conversing with a human through a web-
interface - all behaviors thought to have require systematic representations. Perhaps, the most
surprising finding of scaling-up transformer language models is the emergence of in-context learning
(Brown et al., 2020). In-Context Learning refers to the observation that an LLM is able to pick up
and solve a task, purely by providing more examples in the context window i.e. with no gradient
information flowing through into the model parameters. These results show the immense capabilities
that LLMs possess, and indicate that they are a leap toward building systems equivalent to human
cognition.

However, this still leaves out a crucial question which is - is an LLM able to learn as systematically?
Toward this issue, there have been multiple efforts Zhou et al. (2023); Drozdov et al. (2022), that
claim to have solved popular systematicity evaluation benchmarks (Lake and Baroni, 2018; Kim and
Linzen, 2020), which suggests that we have an answer to the question! LLMs are indeed perfectly
systematic. However, on closer examination, there are multiple confounds that are not addressed in
their papers. The key issue, is that the models are given the novel combinations in-context, leaving
the model little to no generalizing left to do. The second key confound, is that since the benchmarks
are in English (or contain English words), through the course of pretraining the models have already
learned rich embeddings for both the syntactic roles and semantic interpretations of the words that
the model is supposed to generalize to.

In this preliminary paper, we aim to address the aforementioned issues in previous literature. We in-
troduce a novel systematicity benchmark for LLMs, and evaluate the Llama3 series on our benchmark.
We show that LLMs struggle when evaluated on a benchmark that probes their intrinsic systematicity,
and through multiple variations to our dataset analyze the different failure modes that LLMs still
possess, despite their tremendous utility.

3 Related Work

3.1 LLM Evaluation

The development of LLMs can only be measured through the evaluation benchmarks that were devel-
oped alonside them. The bechmarks themselves have evolved from general language understanding
benchmarks such as GLUE (Wang et al., 2019) and its successor SuperGLUE (Wang et al., 2020), to
evaluations on more complex reasoning (Srivastava et al., 2023), language generation (Liang et al.,
2023), and knowledge understanding through question-answering (Wang et al., 2024; Yue et al.,
2023). However, as outlined by the desideratum presented in Hupkes et al. (2023), there still isn’t a
clear systematic generalization benchmark for evaluating LLMs.

In order to facilitate apples-to-apples comparison between LLMs that are becoming increasingly
closed-off, several leaderboards and evaluation testbeds have been established, such as lms (2024)
and Contributors (2023). However, it has been observed that with advancements and updates to the
models, these leaderboards become increasingly saturated and hard to use as a fair measure. Perhaps
more concerningly, evaluation efforts are further conflated by findings (Mishra et al., 2022) that LLM
performance drastically varies by small non-semantic details in the way the evaluation is setup.

3.2 Systematic Generalization

Systematic Generalization has long been studied by cognitive scientists, however, for the sake
of brevity, we review recent literature on the study of systematic generalization specific to the
transformer architecture 1. Most approaches aiming to address the problem of systematicity in
transformers primarily deal with data augmentation techniques, such as Chakravarthy et al. (2022)
induce systematicity through training the model on grammatical roles, Jiang et al. (2022) through
mutual-exclusivity training, Patel et al. (2022) through upscaling the number of primitives, and
most recently Lake and Baroni (2023) through structuring the data as a meta-learning episode. As
for the question of evaluation of systematicity, the picture is still unclear, recent work Wu et al.

1See (Russin et al., 2024) for a more rigorous historical treatment of the problem and study of systematic
generalization.
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Figure 1: Example datapoint containing 14 sample translations and 1 query translation.

(a) An example of a SCAN-equivalent grammar (b) An example of a randomly generated grammar

Figure 2: Examples of grammars that we sample examples from

(2024) suggest that small implementational details overshadow the conclusions drawn from previous
benchmarks (Kim and Linzen, 2020). Additionally, it as yet unclear as to what constitutes a ‘fair’
systematicity benchmark (Kim and Smolensky, 2024), both for humans and for AI systems.

4 Approach

Our dataset construction is split into two sections. The first being developing and evaluating on
SCAN-equivalent grammars and the next being developing a grammar generator and evaluating
on the randomly generated grammars. In both cases, we fix a number of primitives (which can be
thought of as a simplification of verbs), randomly select one primitive to be ‘held-out’ and generate
24 (unless specified otherwise) sentences according to the grammar. All sentences that do not contain
the ‘held-out’ primitive are populated into the support set and the sentences that do contain the
‘held-out’ primitive into the query set. Finally, to ensure productivity within a grammar, all grammars
have a hard-coded left-recursion rule.

Our first task developing SCAN-equivalent grammars builds off of the few-shot instruction learning
task presented in Lake and Baroni (2023). We construct an evaluation dataset using the completion
condition in which the model receives 14 support samples, then is presented with a query. The query
in Figure 1, for example, is fep kiki gazzer -> 2. We populate the samples and queries in such
a way that respects the add-prim generalization split. To elucidate what this means, in Figure 1,
the primitives dax, fep, blicket, gazzer are analogous to the SCAN primitives walk, look,
run, jump. As the add-prim split holds-out occurences of the jump primitive in the full grammar

2As described in the Project Proposal, the reason we use random words as compared to merely sampling
from the SCAN splits is because we want to challenge the model to learn to generalize in a linguistic context it
has not seen in its pretraining data.
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Algorithm 1 An algorithm to randomly sample grammars

Require: Number of primitives nprims; Number of rules nrules; A function to randomly sample
and pop the sampled element from the set 1-random-sample; A function to randomly sample
a random number of elements from a set random-sample; Cardinality of a set function length;
Placeholder variable for primitives x; Placeholder variable for function words u.

input-symbols = {dax, fep, blicket, gazzer, kiki, wif, zup, · · · }
output-symbols = {YELLOW, RED, PINK, GREEN, · · · }
rules = {}
while length(rules) < nprims do

rules← ‘1-random-sample(input-symbols)→ 1-random-sample(output-symbols)′
end while
while length(rules) < nrules do

LHS = 1-random-sample({‘xu′, ‘uu′, ‘uux′, ‘xux′, , ‘xuu′, ‘uuu′})
Assign u in LHS to 1-random-sample(input-symbols)
RHS = random-sample(output-symbols)
rules← ‘LHS → RHS′

end while
rules← ‘ux→ ux′

from the training set, we similarly hold out the gazzer primitive’s occurences from the samples. We
make similar translations for the target vocabulary, such that the resulting grammar is equivalent
to SCAN. By constructing queries of the held-out primitive in varying grammatical constructs, for
each set of samples, we create 10 datapoints. Finally, we create an evaluation dataset of 2000
datapoints of the form described in Figure 1 by creating 200 unique sets of samples through varying
the grammatical roles of dax, fep, blicket, gazzer, kiki, wif, zup. Additionally, we
include an example of a SCAN-equivalent grammar in Figure 2a.

For the second task of evaluating on randomly generated grammars, we present our random grammar
generation in Algorithm 1 and a random generated grammar in Figure 2b. All details regarding the
population of the support and query set are maintained from the SCAN-equivalent grammars, the
only difference here is that the grammar has been generated randomly.

5 Experiments

We evaluate the Llama3 series of models on our systematic generalization evaluation datasets.
Following from previous work that evaluates on the SCAN dataset, we use Exact-Match (EM)
accuracy as the dependent measure. We ran our experiments vLLM with 2 Nvidia A100 GPUs and
set sampling temperature to 0 for determinism and replicability.

Our experiments are centered around 4 central variations to the way the data is presented to the model.
These variations are:

1. Vanilla Dataset: the sample set is presented in a randomly shuffled ordering.

2. Sorted Dataset: the sample set is presented in a increasing-by-length sorted order. As
indicated by Lake and Baroni (2023), this condition is expected to do better as it reduces
uncertainty about the length of the query translations.

3. Reverse Dataset: the set of samples are ordered randomly, however the source and target
languages are switched. 3

4. Reverse-Sorted Dataset: the set of samples are ordered in increasing length, however the
source and target languages are switched.
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Models Vanilla Sorted Reverse Reverse-Sorted
Llama3-8B 42.65 32.00 24.35 22.70
Llama3-8B-Instruct 47.05 41.50 26.30 25.45
Llama3-70B 45.45 49.05 28.30 27.15
Llama3-70B-Instruct 50.20 50.55 27.55 26.05

Table 1: EM accuracy for linguistic variations on the dataset.

Models Vanilla primed-Vanilla
Llama3-8B 42.65 45.65
Llama3-8B-Instruct 47.05 46.30
Llama3-70B 45.45 49.30
Llama3-70B-Instruct 50.20 52.45

(a) EM accuracy with priming.

Models Random Source Random Target
Llama3-8B 2.35 3.05
Llama3-8B-Instruct 5.30 5.50
Llama3-70B 3.75 3.60
Llama3-70B-Instruct 3.45 4.45

(b) EM accuracy when input-label bindings are broken.

Table 2: Effects of confounds in prompting the models.

5.1 SCAN-equivalent Grammars

5.1.1 Linguistic evaluations

The first axes of variation that we evaluate our models across are linguistically-motivated. The first
comparative result that we present is the between the Vanilla and Reverse columns of Table 1. As the
target language is constructed with common colors, it can be expected that the model have learned
rich embeddings about these words. However, since the source language consists of words that are
random, they most likely are represented as groups of embeddings that the model has not previously
encountered. As we observe, the model shows an impressive ability to show systematic generalization
when the embeddings are information-poor, as compared to the converse 4.

The next interesting finding, is in contrast to Lake and Baroni (2023), we don’t see consistent
improvements when giving the model a set of samples that are sorted in increasing length. For the
Llama3-8B variants, both models suffer on the Sorted variant of the dataset. And this phenomenon is
further observed when comparing the Reverse and Reverse-Sorted columns in Table 1 suggesting
that this heuristic observed in previous work does not hold for all variants of the same systematic
generalization evaluation setup.

5.1.2 Prompt-sensitivity evaluations

Two potential weaknesses that we try to address in this section is the model’s sensitivity to confounds
within the prompt that affect the dependent measure.

The first, is the effect of ‘priming’ the model. Priming the model, in our context, amounts to simply
prepending the prompt given to the model with - “You are a subject in a psycholinguistics experiment.”.
The effect of this change are presented in Table 2a. As observed in previous literature, these kinds
of changes have slight impacts on the dependent measure with the largest change observed with the
Llama3-70B model. The second, is a sanity check based on recent work Min et al. (2022); Weber
et al. (2023) suggesting that the input-label bindings in in-context examples don’t hurt performance.
But as we observe by the performance collapse in Table 2b where we shuffle either the source or the
target datapoints in a set of samples drawn from the Vanilla dataset, we can safely conclude that our
task is sufficiently different from Min et al. (2022) that we can proceed with this task design.

5.2 Random-generated Grammars

For this section we only report results with Llama3-70B and Llama3-70B-Instruct. The reason for
this decision, is that these models were the highest performing models. We present our first set of
results in Table 3a. It is evident from the complete lack of traction that these models get on this novel

3Since the grammars we sample from are relatively simple, two source sequences will always lead to two
distinct target sequences, which makes this evaluation reasonable.

4This result suggests all models are able to learn bindings from random sets of embeddings to information-rich
embeddings a lot quicker than the other way around.
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Models Vanilla Sorted
Llama3-70B 0.47 0.97
Llama3-70B-Instruct 0.72 0.97

(a) EM accuracy for episodes produced by random
generated grammars.

Models Vanilla Sorted
Llama3-70B 0.55 0.85
Llama3-70B-Instruct 0.59 0.80

(b) EM accuracy for episodes produced by the sim-
plified random generated grammars.

Table 3: Evaluations on randomly generated grammars.

Models 10p-Vanilla 10p-Sorted 20p-Vanilla 20p-Sorted
Llama3-70B 0.26 0.26 0.36 0.34
Llama3-70B-Instruct 0.26 0.26 0.29 0.27

Table 4: EM accuracy for episodes produced by increasing context by increasing number of primitives.

task, that these models seem to be struggling on either grammar acquisition and being systematic in
those grammars or the generalization gap being too far for the models to reasonably generalize over.

In order to pry out the failure modes observed in Table 3a, we attempt to reduce the effects of grammar
acquisition by following the results presented in Patel et al. (2022). Their central result was showing
that benchmarks such as SCAN are under-specified, and increasing the number of primitives, yields a
monotonic increase in the dependent measure on the generalization split. We hypothesize that this
result stems from the model accruing a larger set of evidence over the same grammar rather than the
intrinsic systematicity of representations learned by the model. Following this hypothesis, we create
longer contexts, not by naively sampling more examples from the randomly generated grammar,
but by holding the characteristics of the randomly generated grammars, increasing the number of
primitives, and maintaining the proportion of examples between the support set and query set (only
changing nprims in Algorithm 1, and scaling the number examples while respecting the proportion
between the support and query set).

We present the results for evaluation on data upscaled through this technique in Table 4. Each
column’s prefix indicates the number of primitives that are present in the grammar. And, on average
the datasets containing 10 primitives, roughly contained 45 support samples and 30 query samples,
while the datasets containing 25 primitives, roughly contained 90 support samples and 60 query
samples. Naturally, these datasets ended up being larger than the previously discussed evaluation
dataset, with 6000 and 12000 evaluation episodes each. Even with these modifications, the models
struggle with our generalization split, presumably because the generalization gap was too large.

The final confound which we aim to mitigate for is the challenge of reasoning over infrequently
seen embeddings. One plausible explanation for the complete collapse of these models is that the
there is a slight non-zero chance that the random sequences of embeddings that some of the words
that are present in the generated grammars can cause an additional layer of difficulty which is not
really a measure of systematicity. In order to evaluate the effects of this hypothesis, we construct
simplified variants of the grammars, by changing the set of input-symbols in Algorithm 1, to the set of
capital English letters, that is, modify {dax, fep, blicket, gazzer, kiki, wif, zup, · · · }
to {A, B, C, D, E, F, G, · · · } and use this set to produce grammars, and thereby evaluation
episodes. We present results for this evaluation in Table 3b. And, following the trend, we still find
that the models struggle to gain traction on this variation of the dataset.

6 Analysis

By comparing the results between Sections 5.1 and 5.2, we come to see the difference in between
the in-context systematicity across grammars. Since the SCAN grammar we experimented with in
Section 5.1, is a plausible grammar which could be generated by the grammar generator that we
presented in Algorithm 1. As a result, it is plausible to expect that there exist certain grammatical
structures that LLMs find easier to acquire and be systematic over and other grammatical structures
that they find much harder to acquire and be systematic over. Comparing the results also indicates
these models learn a prior over linguistic structures. Our results when viewed in conjunction with the
results from Akyürek et al. (2024) which suggest that LLMs acquire language through specialized
“n-gram heads”, also supports this hypothesis.
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Another explanation for this difference in results, is the possibility of data contamination. It is not
unlikely that a model pretrained on internet scale data, and in particular, arXiv papers, could have been
trained on literature either referencing or describing the SCAN grammar. As a result, the performance
on the SCAN equivalent grammars could be a mirage and the collapse in performance on random
grammars perhaps indicates a complete lack of systematicity within the learned representations even
after the massive data and compute that were invested into these models.

Unfortunately, it was difficult for us to perform a clean and detailed failure-mode analysis of the
evaluation and try to come up with an explanation for the collapse of performance in Section 5.2 owing
to compute restrictions and the difficulty of disentangling failures on certain linguistic structures as
nested in other linguistic structures. One example of this, is the empirical observation that all the
models we evaluated on struggled on acquiring the ‘reversal’ rule. In most examples we found of
this rule, the models exhibited the ‘iconic-concatenation’ 5 failure mode identified also in humans by
Lake and Baroni (2023). An example of this rule is the last rule from Figure 2a 6. However, due to
the left recursion and the phrase rules, it is harder to construct an accurate measure of the accuracy
on just this rule to thereby concretely argue about the acquisition of this rule.

7 Conclusion

In this preliminary paper, we presented a novel evaluation benchmark called ISE. We showed that our
benchmark is a significantly challenging benchmark for reasonably-sized LLMs, and that previous
work aiming to address the issue of systematicity in LLMs dramatically overestimate the abilities
of LLMs. However, there are a few key limitations that our evaluations still lack. The first, is that
benchmarks such as SCAN and COGS have only be claimed to solved through prompting strategies
(Drozdov et al., 2022; Zhou et al., 2023). It is, therefore, important for us to replicate these prompting
strategies into our evaluation strategy and study whether prompting can solve our task. The second
key limitation is the issue of explainability. We have results suggesting a failure mode of LLMs,
however, we still have no understanding as to why they fail, or the algorithm they try to employ in the
cases they do succeed. Addressing these limitations will be the focus of future work on this project.

8 Ethics Statement

Since our work develops a new evaluation benchmark, we do not forsee any intrinsic ethical or
societal impacts. However, since our evaluation highlighted a previously unknown and understudied
failure mode of LLMs, it does highlight certain societal impacts which arise from the training of
LLMs. Despite the limited size of the models which we evaluated on, it is not implausible to believe
that a similar failure mode could be exposed on larger models such as GPT-4. This raises the question
of the necessity for the immense resources that are being pushed into developing frontier foundation
models. This claim would only hold worth, if we run experiments with humans and decisively show
that humans can solve these tasks while LLMs cannot.

The second ethical concern is that around data privacy. For this discussion, let us assume that the
Llama3 model has been trained on some information around the SCAN benchmark. If the gap
between an equivalent generalization gap on trained data versus unseen data is around 50%, these
models are much better at memorizing, than reasoning when brought truly out-of-distribution. The
reason this result can be cast as an ethical issue, is around tasks which require creative expression.
Imagine the counterfactual where an LLM is trained on all of the writings of a particular author, the
model would be able to perfectly mimic the behavior of the author and write in their style. Such a
model, can be very easily used to put multiple such authors out of a job.

A potential mitigation strategy (which is quite impractical) is the manual/automated vetting of the
pretraining corpus. Through this, it could be estimated how much these models have learned and
what are other such aspects the models have memorized, that we do not want them to.

5The bias of producing random target vocabulary tokens to match the length of the source sequence.
6[x1] kiki [x2] → [x2][x1]
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