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Abstract

Learning from human preferences is crucial in developing modern large lan-
guage models. Reinforcement Learning with Human Feedback (RLHF) is a well-
established method that has shown notable success in preference alignment. Direct
Preference Optimization (DPO) was later introduced, offering comparable perfor-
mance to RLHF with greater efficiency and ease of use. Subsequently, Identity
Preference Optimization (IPO) was proposed to address some shortcomings of
DPO while maintaining its benefits. However, IPO requires an IID-ness condi-
tion for prompt pairs in alignment datasets, which is often unmet in real-world
applications, limiting its practicality. We propose an alternative variant, Extended
IPO (xIPO), to handle scenarios where the IID-ness condition is not met. We also
analyze the impact of non-IID data on IPO’s performance, providing examples
where IPO fails significantly with such data.
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2 Introduction

Learning from human preferences is crucial for aligning large language models with human expecta-
tions. Reinforcement Learning with Human Feedback (RLHF) has been a key approach, leveraging
reward models trained on human preferences to guide policy learning. However, RLHF relies on two
important approximations: replacing pairwise preferences with pointwise rewards and assuming that
the reward model generalizes well to new data. Direct Preference Optimization (DPO) simplifies this
by learning policies directly from preference data, bypassing the reward modeling stage. Yet, DPO
still depends on substituting pairwise preferences with pointwise rewards.

In this work, we propose Extended Identity Preference Optimization (xIPO), an advancement that
addresses these limitations by handling non-IID data, which is often encountered in real-world
applications. xIPO extends IPO, which initially provided a more general loss function for preference
optimization but required the IID condition for prompt pairs. Our theoretical analysis and experiments
show that xIPO maintains robust performance even when the IID assumption is violated, making it a
versatile solution for preference alignment.
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3 Related Work

Learning from human preferences has been extensively studied, particularly in the context of aligning
large language models. Reinforcement Learning with Human Feedback (RLHF) Ouyang et al. (2022)
has been a prominent approach, using methods like PPO Schulman et al. (2017) to optimize policies
based on human-labeled reward functions. However, RLHF relies on approximations that can limit
its effectiveness in certain scenarios.

Direct Preference Optimization (DPO) emerged to address some of these limitations by directly
learning policies from preference data, eliminating the need for reward modeling Rafailov et al.
(2023). DPO has shown competitive performance with RLHF on various language tasks, offering a
simpler and resource-efficient alternative.

The Identity Preference Optimization (IPO) algorithm Gheshlaghi Azar et al. (2024) was introduced
to further improve on DPO by addressing the pairwise preference assumption directly. IPO provides
a more general loss function and has demonstrated empirical superiority over DPO in specific cases.
However, IPO’s reliance on IID data limits its applicability in real-world settings (Wang et al., 2023;
Chen et al., 2022).

Our work builds on these foundations, proposing Extended IPO (xIPO) to handle non-IID data
effectively. By extending IPO’s capabilities, xIPO addresses a significant limitation in existing
methods, ensuring robust performance across diverse datasets. This advancement is crucial for
real-world applications where data often does not meet IID conditions, making xIPO a versatile and
practical solution for preference optimization.

4 Approach

4.1 Background

A common method for policy optimization in human preference alignment is through minimizing an
objective of the form

L(π) = E
x∼ρ

y∼π(·|x)

[r(x, y)]− τDKL(π ∥ πref), (1)

where x and y are the input prompt and output generation, π is the generation policy parameterized
by the language model network, r is a reward function, πref is a reference policy, and τ is a
hyper-parameter. In Reinforcement Learning with Human Feedback (RLHF) Ouyang et al. (2022),
this objective is minimized using reinforcement learning methods such as PPO Schulman et al.
(2017), with the reward function r learned from human-labeled preference data. Direct Preference
Optimization (DPO) Rafailov et al. (2023) optimizes this objective using a method that does not
involve directly learning a reward function, utilizing the same preference data to learn a minimizer
of (1). Identity Preference Optimization (IPO) Gheshlaghi Azar et al. (2024) was later introduced,
considering a more general loss of the form

LΨ(π) = E
x∼ρ

y∼π(·|x)
y′∼µ(·|x)

[Ψ(p∗(y ≻ y′|x))]− τDKL(π ∥ πref), (2)

where Ψ can be any function, p∗ is a probability function modeling human preference, y ≻ y′ denotes
the event of a generation y being preferred to y′ by the human labeler, and µ is a behavior policy.
Gheshlaghi Azar et al. (2024) suggests using the identity function for Ψ, leading to the IPO objective:

L(π) = E x∼ρ
y∼π(·|x)
y′∼µ(·|x)

[p∗(y ≻ y′|x)]− τDKL(π ∥ πref). (3)

For brevity, we drop the conditioning on x. Using a method similar to DPO, the IPO loss is introduced
as

LIPO(π) = E
y,y′

[(
hπ (y, y

′)− τ−1(p∗(y ≻ µ)− p∗(y′ ≻ µ))
)2]

, (4)

where p∗(y ≻ µ) is the expected probability of a generation y being preferred to a sample generation
from the behavior distribution µ,

p∗(y ≻ µ) = E
z∼µ

[p∗(y ≻ µ)] , (5)
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and the function hπ is defined as

hπ(y, y
′) = log (π(y)/πref(y))− log (π(y′)/πref(y

′)) . (6)

Since p∗ is not accessible, Gheshlaghi Azar et al. (2024) introduces the Population IPO loss

LpIPO(π) = E
y,y′

[(
hπ(y, y

′)− τ−1I(y, y′)
)2]

, (7)

and the Sampled IPO loss

LsIPO(π) = E
y,y′

[(
hπ(yw, yℓ)− τ−1/2

)2]
, (8)

where I(y, y′) is an indicator variable that is 1 if y is preferred to y′ and 0 otherwise. yw and yℓ are
the winner and loser in the comparison of y, y′ by the human labeler. We drop the conditioning on x
for brevity. Gheshlaghi Azar et al. (2024) proves that the IPO loss in (3) is equivalent to the losses
in (7) and (8) given the constraint that y and y′ are IID. This condition is often unmet in real-world
applications. Thus, we propose a novel loss to handle non-IID input samples.

4.2 Identity Preference Optimization with Non-IID Samples

As stated earlier, the IPO algorithm in Gheshlaghi Azar et al. (2024) works with IID data, but cannot
handle non-IID data. Our goal remains to minimize the true objective (3). However, without access
to IID pairs (y, y′), minimizing the loss in (4), (7), or (8) is not feasible. We modify the IPO loss (4)
for non-IID pairs y, y′. We call the new loss LIPO

µ1,µ2
, emphasizing that the sampled generations y, y′

can follow different distributions:

LIPO
µ1,µ2

(π) = E
y∼µ1

y′∼µ2

[(
hπ (y, y

′)− τ−1(p∗(y ≻ µ)− p∗(y′ ≻ µ))
)2]

. (9)

Though (9) suggests (y, y′) are independent, they need not be, and our results hold without this
assumption. We must show that optimizing (9) and (3) are equivalent, as stated in the following
theorem.

Theorem 1. For any given distributions µ1, µ2, µ with the same support, the loss (9) has a unique
minimizer π∗, which is also the unique optimal policy of (4).

The proof is in Appendix A. This shows that the IID condition in (4) is unnecessary. However, this
does not transfer directly to (7) or (8). Without the IID assumption, LIPO(π), LpIPO(π), and LsIPO(π)
become different functions, none equivalent. LIPO(π) explicitly depends on µ, while LpIPO(π) and
LsIPO(π) do not, if µ1, µ2 ̸= µ. The next theorem explains their relationship.

Theorem 2. Let LpIPO
µ1,µ2

(π) and LsIPO
µ1,µ2

(π) be defined as

LpIPO
µ1,µ2

(π) = E
y∼µ1

y′∼µ2

[(
hπ(y, y

′)− τ−1I(y, y′)
)2]

, LsIPO
µ1,µ2

(π) = E
y∼µ1

y′∼µ2

[(
hπ(yw, yℓ)− τ−1/2

)2]
.

(10)
Then,

LsIPO
µ1,µ2

(π) = LIPO
µ1,µ2

(π) + τ−1 E
y∼µ1

y′∼µ2

[hπ(y, y
′)] + c, (11)

where c is a constant independent of π.

Corollary 2.1. E y∼µ1

y′∼µ2

[hπ(y, y
′)] reduces to the difference in expected log-likelihood ratios over µ1

and µ2. If µ1 = µ2, this term is zero, making LpIPO(π) and LsIPO(π) equivalent.

Proof of Theorem 2 is in B. Corollary 2.1 confirms the equivalence of the losses in Gheshlaghi Azar
et al. (2024), and Theorem 2 shows how this equivalence fails without the IID assumption. See
Section 5.4 for simulations and examples.

We have shown that the standard IPO pipeline fails without IID data. Next, we introduce methods to
address this issue.
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4.3 xIPO: The Extended Identity Preference Optimization

To address the earlier challenge, we propose a novel loss function and prove its equivalence to our
main objective. Our Extended IPO (xIPO) loss is defined as

LxIPO
µ1,µ2

(π) = E
y∼µ1

y′∼µ2
z∼µ

[(
hπ(y, y

′)− τ−1 (I(y, z)− I(y′, z))
)2]

, (12)

where I(y, z) is 1 if the human labeler prefers y over z and 0 otherwise. Theorem 3 provides the
required theoretical guarantee, showing that minimizing the new loss is equivalent to optimizing our
original objective.
Theorem 3. The extended IPO loss LxIPO

µ1,µ2
(π) introduced in (12) and the non-IID IPO objective

LIPO
µ1,µ2

(π) defined in (9) are equivalent up to a constant independent of π.

Corollary 3.1. Minimizing LxIPO
µ1,µ2

(π) is equivalent to minimizing L(π) in (3). This combines the
results of Theorems 1 and 3.

The xIPO loss handles non-IID data samples but requires triplets (y, y′, z) and two comparisons,
I(y, z) and I(y′, z). The original IPO only needed pairs (y, y′) and a comparison I(y, y′). This
trade-off allows for a broader dataset but requires more data and labeling. The loss LIPO

µ1,µ2
(π) in (9)

depends on three distributions µ1, µ2, µ, necessitating data samples from all three.

We define the sampled version of the xIPO loss (12) as

L̂xIPO(π) =
1

|D|
∑

(y,y′,z)∈D

[(
hπ(y, y

′)− τ−1 (I(y, z)− I(y′, z))
)2]

. (13)

With the sampled xIPO loss, one can use any finite dataset and network structure with parameters θ
to parameterize the policy πθ and solve the alignment task by minimizing the loss. See Section 5.4
for supporting simulations and results.

Before concluding this section, we note that the xIPO algorithm requires triplets (y, y′, z) instead of
pairs (y, y′). Obtaining such data can be challenging, especially since data generation is expensive.
Many applications prefer using existing datasets, which generally lack the z samples needed for our
approach. In the next part, we introduce a method to address this issue for cases where the original
data only includes pairs (y, y′) but also provides human-provided scores for each y and y′. This is
inspired by the UltraFeedback dataset Cui et al. (2023), a recent and commonly used dataset for
alignment tasks.

4.4 Score-based xIPO: A Simplified Version of xIPO

We note an important observation about the xIPO loss in (12) regarding generation z. The value of z
is unimportant; only the comparison results I(y, z) and I(y′, z) matter. This motivates constructing
I(y, z) and I(y′, z) without explicitly sampling z ∼ µ.

Inspired by the UltraFeedback dataset Cui et al. (2023), where generations y and y′ have quality
scores from 1 to 10, we introduce score-based xIPO. Given quality scores for y and y′, this method
doesn’t need explicit samples of z. Suppose the score function s is given, and s(y) ∈ R is the quality
score for generation y. In a simplistic model, we can assume

I(y, z) = 1(s(y) > s(z)) =

{
1 s(y) > s(z)

0 otherwise
. (14)

For simplicity, we use this deterministic model. We can rewrite I(y, z)− I(y′, z) as
I(y, z)− I(y′, z) = 1(s(y) > s(z))− 1(s(y′) > s(z)). (15)

Given a distribution µ over all possible generations z, consider the corresponding score distribution
µs. Instead of sampling z from µ and scoring it, we directly sample a score sz ∼ µs and use it in the
xIPO loss. This allows us to rewrite the xIPO loss (12) as

LxIPO
µ1,µ2

(π) = E
y∼µ1

y′∼µ2
sz∼µs

[(
hπ(y, y

′)− τ−1 (1(s(y) > sz)− 1(s(y′) > sz))
)2]

. (16)
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If µs is hard to calculate, one can estimate µs using samples z ∼ µ or assume a reasonable distribution
µs to generate scores. This method is effective because our goal is to find a policy that maximizes
the average probability of outperforming policy µ while staying close to a reference policy πref. By
introducing a score distribution µs, our policy will learn to outperform the policy µ implicitly defined
by µs. Thus, a proper choice of µs can lead to a well-performing final policy.

5 Experiments

We ran the following two sets of experiments:

1. Bandit experiments. To test our theoretical claims and new fine-tuning methods, we first
experimented with bandit problems with relatively small action sets. In a bandit problem,
there is no input prompt (x), and the policy chooses an action from a finite set of actions.

2. Preference alignment with LLMs experiments. We tested our fine-tuning algorithms
using the UltraFeedback Cui et al. (2023) dataset and compared the results with baselines.
For policy parameterization, we used the Tule-2 Ivison et al. (2023) model.

Each subsection below details these experimental settings.

5.1 Data

5.1.1 Bandit experiments

For the bandit experiments, we used synthetic data constructed locally. For a bandit problem with
N actions ([N ] = {1, · · · , N}), the distributions µ1, µ2, µ are discrete probability vectors of length
N . For the xIPO experiments, triplets (y, y′, z) are sampled according to these probability vectors.
Comparisons I(y, z) and I(y′, z) use a Bradley-Terry model, with a reward vector r ∈ RN and I(y, z)
sampled from a Bernoulli distribution given by P [I(y, z) = 1] = P [y ≻ z] = σ (r(y)− r(z)), where
σ(q) = 1/(1 + exp(−q)) is the sigmoid function. The Bradley-Terry model is not required for our
algorithms but is used here for its popularity in preference modeling.

For the score-based experiments, scores are defined from 0 to 10 (following UltraFeedback Cui et al.
(2023)). For an action i ∈ [N ], the corresponding score is s(i) = 10i/N ∈ [ 10N , 10].

5.1.2 Preference alignment with LLMs experiments

We used the UltraFeedback dataset Cui et al. (2023), which includes about 64,000 instruction prompts,
each with four responses generated by different models from a pool of 17 models including GPT-4,
GPT-3.5, Bard, LLaMA2-7B/13B/70B-Chat, Alpaca-7B, and Falcon-40B-Instruct. Each response is
scored from 1 to 10 by GPT-4. This dataset provides our (y, y′) entries. To generate the z values, we
use the Tulu-2 7B SFT model3. UltraFeedback instructions are inputs for generating z values, which
are then scored using the same GPT-4 scoring pipeline used by UltraFeedback.

5.2 Evaluation Method

5.2.1 Bandit experiments

For the bandit experiments, we have synthetic data, giving us access to all environment parameters.
This allows us to compute the optimal policies analytically. We use the distance from the optimal
policy as our evaluation metric, comparing policies from pIPO, sIPO, and xIPO.

5.2.2 Preference alignment with LLMs experiments

For response generation, we use the standard win-rate metric. We calculate the win-rate of each
model’s output compared to the four responses from the UltraFeedback dataset. The responses are
scored by GPT-4. Using the same scoring pipeline, we score our generations. By comparing scores,
we determine the win-rate against the best and worst of the four UltraFeedback generations for pIPO,
sIPO, xIPO, and score-based xIPO.

3https://huggingface.co/allenai/tulu-2-dpo-70b
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5.3 Experimental Details

5.3.1 Bandit experiments

The bandit experiment parameters are given in Table 1. Since there is no input prompt, the network
has N parameters, and the output is generated by passing these parameters through a sigmoid layer
to produce action probabilities or a policy.

# actions # samples τ # epochs Learning rate
3 10,000 0.1 20,000 2× 10−3

Table 1: Experiment parameters
5.3.2 Preference alignment with LLMs experiments

Training parameters and structures are the same as those available on the AllenAI GitHub repository4.
The only modification is the change in loss functions. We kept all other elements of the fine-tuning
pipeline the same and fine-tuned the Tulu-2 SFT 7B model using pIPO, sIPO, and xIPO objectives.

5.4 Results

5.4.1 Bandit experiments

Loss functions. We consider a bandit setting with an action set of size 3. This means there are
only three possible outputs and one context, and each policy π can be represented as a vector of
length 3, with non-negative entries that sum to 1. Thus, we can parameterize each policy π by two
parameters x and y. In other words, we can write π = [x y 1− x− y]. This allows us to express
any loss function L(π) such as those in (3), (4), (7), and (8) as 3-dimensional plots. Here, the loss
L(π) = L(x, y) is represented as a function of the two independent variables x and y over the region
{(x, y)|x ≥ 0, y ≥ 0, x+ y ≤ 1}.

Figure 1 shows the plots of LIPO(π), LxIPO
µ1,µ2

(π), and LsIPO
µ1,µ2

(π). The first two coincide (up to an
additive constant) and are depicted in Figure 1a, while the latter is presented in Figure 1b. The
parameters used for these simulations are:

p∗(0 ≻ 1) = 0.8, p∗(1 ≻ 2) = 0.8, p∗(0 ≻ 2) = 0.2, τ = 0.1,

µ1 = (0.90, 0.05, 0.05), µ2 = (0.05, 0.90, 0.05), µ = (0.05, 0.05, 0.90),

with πref chosen to be uniform.

Figure 1 shows how different the minimizers of these loss functions are. This means that when the
condition µ1 = µ2 = µ is not met, using the vanilla IPO from Gheshlaghi Azar et al. (2024) can
result in a policy far from the optimal. However, since LIPO(π) and LxIPO

µ1,µ2
(π) coincide, our xIPO

loss is equivalent to the true objective, allowing convergence to the optimal policy.

Training results. Figure 2 shows the distance of the optimal policy from the policies achieved by
each algorithm over time. For all variants of IPO i.e., pIPO, sIPO, and xIPO, the optimal policy is the
same and given by

π∗(y) ∝ πref(y) exp
(
τ−1p∗(y ≻ µ)

)
,

while the DPO optimal policy requires a notion of reward and the Bradley-Terry model assumption
and is different. To generate the plot in Figure 2, we used these analytical optimal policies and
computed their distances from the policies generated by the algorithms sIPO, xIPO, pIPO, and DPO.

As the plot in Figure 2 shows, only DPO and our extension of IPO, xIPO, converge to the optimal
policy, as their distance from the optimal policy converges to zero. The other two variants of IPO do
not achieve the optimal solution. This confirms our earlier results and supports our claim that when
the distributions of the generation pair (y, y′) are not the same, vanilla IPO does not necessarily work.
We need to use our new method, extended IPO, which works perfectly.

Score-based xIPO. Score-based xIPO, as detailed in Section 4.4, is a variant of xIPO that, given
access to quality scores for all output generations, implements xIPO without the need to explicitly
generate samples z ∼ µ. The theoretical implications and guarantees of xIPO remain unchanged,
as score-based xIPO has the same loss function but minimizes it differently. The results from the
previous sections hold for score-based xIPO as well. Appendix D includes sample results for brevity.

4https://github.com/allenai/open-instruct
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(a) True IPO loss and extended IPO loss (b) Sampled IPO loss

Figure 1: Comparison of true IPO loss, sampled IPO loss, and extended IPO losses

Figure 2: Distance to optimal policy for different preference alignment algorithms

5.4.2 Preference alignment with LLMs experiments

We compare the outcome of pIPO, sIPO, and xIPO with the responses in the UltraFeedback dataset
that have the highest and lowest responses, using GPT-4 as the proxy human labeler to determine the
winner and loser, and hence the win-rate. The results are presented in Table 2.

pIPO sIPO xIPO
Win-rate against best UltraFeedback response (%) 48.4 57.8 58.4

Win-rate against worst UltraFeedback response (%) 73.2 82.1 83.7
Table 2: Experiment results

pIPO shows the worst performance, which is expected as pIPO is the initial version of IPO presented
in Gheshlaghi Azar et al. (2024), and sIPO was proposed as a more stable version. Comparing xIPO
and sIPO, we observe a slight improvement with xIPO, but not as much as expected. This may be
because the UltraFeedback dataset is close to being IID, making it less suitable for comparing xIPO
and sIPO. Additionally, our evaluation metric is win-rate based on human preference, which is not
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always aligned with the optimal policy of (4). While xIPO performs similarly to sIPO, it might still
be closer to π∗ of (4), aligning with our theoretical results.

6 Analysis

We observed that xIPO generalizes the performance of IPO for non-IID input data. Comparing pIPO
and xIPO losses reveals that both aim to fit hπ(y, y

′) to a constant independent of π. In pIPO, this
constant can be 0 or 1, corresponding to y being better or worse than y′. However, for xIPO, there are
three cases: −1, 0, or 1, as the difference I(y, z)− I(y′, z) can take these values. This gives xIPO
more flexibility in comparisons, allowing for win, lose, and draw, determined by z or the behavior
policy µ. This provides intuition on how xIPO makes IPO more general.

xIPO has higher variance than sIPO because sIPO uses asymmetry in pIPO to reduce variance. This
trick is not applicable to xIPO as it is symmetric, so no further symmetrization is possible. Therefore,
if the IID assumption holds, sIPO might perform better than xIPO due to its lower estimator variance.

An important consideration is the choice of µ. The goal, as defined by (4), is to find a policy that
performs better than µ. If µ is an extremely good policy, running xIPO to outperform it might result
in I(y, z) = I(y′, z) = 0 over the dataset, since z is always better than y and y′. The model might
learn that z is better than y and y′ without necessarily learning how to be better than z, unless it sees
examples that are better than z. This is crucial when selecting µ based on the available training data.

7 Conclusion

In this project, we explored the limitations of Identity Preference Optimization (IPO) with non-IID
data and proposed Extended IPO (xIPO) as a solution. Our theoretical analysis and experiments
demonstrated that xIPO generalizes IPO to handle non-IID data effectively, maintaining the ability
to converge to the optimal policy. We showed that xIPO, unlike pIPO and sIPO, accommodates
comparisons that include ties, providing a more flexible framework for preference alignment. Our
experiments with synthetic bandit problems confirmed that xIPO and DPO converge to the optimal
policy, while pIPO and sIPO do not, validating our theoretical claims. In the context of large language
models, we observed that xIPO offers a slight improvement over sIPO, although the dataset used may
not fully highlight the benefits of xIPO due to its near-IID nature.

Despite these achievements, our work has limitations. xIPO exhibits higher variance than sIPO, which
may affect its performance when the IID assumption holds. Additionally, the choice of the behavior
policy µ is critical, as selecting an extremely good policy could lead to suboptimal learning outcomes.
Future work could focus on further reducing the variance of xIPO and exploring more sophisticated
methods for selecting µ. Additionally, applying xIPO to a broader range of datasets and real-world
applications would help validate its effectiveness and generalize its use cases. Investigating alternative
models to the deterministic score-based comparisons and integrating more realistic scenarios could
also enhance the robustness of xIPO.

8 Ethics Statement

This project is not about a specific application of language models. Instead, we are providing a new
general fine-tuning method so that people can use a larger group of datasets for their fine-tuning
purposes. This means that everyone can use our proposed fine-tuning method for their own specific
application. As a result, our project is unfortunately challenged by almost every ethical challenge
that may exist. For instance, one important problem with our project, which improves how language
models learn from data, is that these models might pick up and even increase biases from the data they
are trained on. This means they could unfairly favor or discriminate against certain groups of people.
Another risk that comes to mind is that people might use these improved models to create misleading
or harmful content because they can write very well. To handle these issues, we can check the data
and the model’s outputs to find and lessen these biases. We will look at how the model’s responses
vary across different groups of people and make adjustments where necessary. However, we believe
that as hard as we try, one can still overpower our considerations if they have bad intentions. So, one
of the best ways could be to produce a set of rules on how to use our model responsibly, making it
clear what it should and shouldn’t be used for, and act based on trust.
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A Proof of Theorem 1

The proof is almost exactly the same as the proof of Theorem 2 in the IPO paper Gheshlaghi Azar
et al. (2024), with the only difference being the change in the positive multiplicative weights in
Equation (15) of Gheshlaghi Azar et al. (2024). The rest of the proof is the same.

B Proof of Theorem 2

Consider the difference LsIPO
µ1,µ2

(π)− LIPO
µ1,µ2

(π). Expanding the quadratic terms in both expectations,
the terms hπ(y, y

′)2 cancel out. Also, the constant terms are not important and will construct the
constant c. Thus, we need to show that the difference of the corss-terms amounts to E y∼µ1

y′∼µ2

[hπ(y, y
′)],

i.e.,
2

τ
E

y∼µ1

y′∼µ2

[hπ(y, y
′)I(y, y′)]− 1

τ
E

y∼µ1

y′∼µ2

[hπ(yw, yℓ)] =
1

τ
E

y∼µ1

y′∼µ2

[hπ(y, y
′)] ,

or equivalently,

E
y∼µ1

y′∼µ2

[hπ(yw, yℓ)] = 2 E
y∼µ1

y′∼µ2

[hπ(y, y
′)I(y, y′)]− E

y∼µ1

y′∼µ2

[hπ(y, y
′)] . (17)
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E
y∼µ1

y′∼µ2

[hπ(yw, yℓ)] = E
y∼µ1

y′∼µ2

[hπ(y, y
′)p∗(y ≻ y′) + hπ(y

′, y)p∗(y′ ≻ y)]

= E
y∼µ1

y′∼µ2

[hπ(y, y
′)p∗(y ≻ y′)− hπ(y, y

′) (1− p∗(y′ ≻ y))]

= E
y∼µ1

y′∼µ2

[2hπ(y, y
′)p∗(y ≻ y′)− hπ(y, y

′)]

= 2 E
y∼µ1

y′∼µ2

[hπ(y, y
′)p∗(y ≻ y′)]− E

y∼µ1

y′∼µ2

[hπ(y, y
′)]

= 2 E
y∼µ1

y′∼µ2

[hπ(y, y
′)I(y, y′)]− E

y∼µ1

y′∼µ2

[hπ(y, y
′)]

(18)

C Proof of Theorem 3

It suffices to show the equality of the cross terms in the two loss functions. This is given by

E
y∼µ0

y′∼µ1

[hπ(y, y
′) (p∗(y ≻ µ)− p∗(y′ ≻ µ))] = E

y∼µ0

y′∼µ1

[
hπ(y, y

′) E
z∼µ

[p∗(y ≻ z)− p∗(y′ ≻ z)]

]
= E

y∼µ0

y′∼µ1
z∼µ

[hπ(y, y
′) (p∗(y ≻ z)− p∗(y′ ≻ z))]

= E
y∼µ0

y′∼µ1
z∼µ

[hπ(y, y
′) (I(y, z)− I(y′, z))] .

(19)

D Score-based xIPO simulation results

We have considered bandit examples with N = 30 actions. For the score-based experiments, scores
are defined from 0 to 10. For an action i ∈ [N ], the corresponding score is s(i) = 10i/N ∈ [ 10N , 10].
For two different score distributions µs, we have plotted the score distributions, and the final policies
given by DPO, (sampled) IPO, and xIPO. Figures 3, 4, 5, 6 show the first scenario, and Figures 7, 8,
9, 10 demonstrate the second.

We can observe that the score distribution has a direct effect on all the algorithms. Specifically, xIPO
tends to converge to policies that outperform the policy µ that is implicitly defined by the score
distributions. However, once it outperforms that policy, it will stop the optimization and does not
further optimize over the absolute score values.

10



Figure 3: Score distributions – case 1

Figure 4: DPO policy – case 1

Figure 5: IPO policy – case 1

Figure 6: xIPO policy – case 1
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Figure 7: Score distributions – case 2

Figure 8: DPO policy – case 2

Figure 9: IPO policy – case 2

Figure 10: xIPO policy – case 2
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