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Abstract

Multitask learning (MTL) in natural language processing promises enhanced effi-
ciency by leveraging shared representations across tasks, but faces challenges like
task interference and resource imbalance. To address these, we explore the integra-
tion of Projected Attention Layers (PALs) with task scheduling algorithms (round
robin, annealed sampling, and dynamic prioritization) on a multitask BERT model
for sentiment analysis, paraphrase detection, and semantic similarity. Through
extensive ablation studies, we isolate the impacts of PALs and schedulers, and
propose optimizations for less-resourced tasks. Our findings suggest that while
PALs offer theoretical benefits, their practical implementation does not consis-
tently outperform baseline models. However, effective task scheduling, particularly
annealed sampling and dynamic prioritization, significantly enhances multitask
performance. These findings underscore the nuanced trade-offs in MTL and the
need for context-specific strategies to balance shared and task-specific learning.

1 Key Information to include

Our mentor is Johnny Chang. We have no external collaborators, and we are not sharing the project
with any other course.

2 Introduction

Since their introduction in 2017 by Vaswani et al. (2023), transformers have established themselves
as the reference model for natural language processing. BERT’s paradigm of pretraining on vast
datasets followed by fine-tuning on specific downstream tasks has demonstrated unprecedented
performance improvements Devlin et al. (2019). However, the sheer size and computational demands
of transformers pose significant challenges when fine-tuning models individually for each task due
to the extensive computational resources required and the potential redundancy in training separate
models for each task. This leads to a pertinent question: can we efficiently train a single multitask
model that leverages the strengths of BERT while mitigating the associated computational overhead?

Multitask learning (MTL) offers a promising avenue to address this challenge by training a model
on multiple tasks simultaneously, leveraging commonalities across tasks to improve generalization,
performance, and efficiency. However, MTL introduces its own set of challenges, notably task
interference and the difficulty of balancing learning across tasks with varying resource availability.

In this paper, we extend the works of Stickland and Murray (2019) and Guo et al. (2018), exploring the
interaction of Projected Attention Layers (PALs) with three established task scheduling algorithms:
round robin, annealed sampling, and dynamic task scheduling. We conduct rigorous comparisons
and ablation studies to identify the optimal combination of PALs and task scheduling strategies for
enhancing MTL performance. We evaluate the performance of our multitask BERT classifier on three
tasks: sentiment analysis (SST), paraphrase detection (Quora), and semantic textual similarity (STS).
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Our primary contributions are as follows: we conduct extensive experiments with various combina-
tions of PALs and three established task schedulers to evaluate their impact on multitask learning
performance; we perform ablation studies to isolate the influence of the number of PALs versus
task schedulers on task performance and interference; and we propose optimization techniques,
including bootstrapping and increasing batch sizes, to enhance the performance of less-resourced
tasks, specifically in the context of PALs.

Our experimental results demonstrate that incorporating PALs, while promising in theory, does
not always yield better results compared to our baselines. However, employing effective task
scheduling strategies significantly improves performance on multitask learning benchmarks. Through
detailed analyses, we provide insights into the best practices for implementing MTL models in NLP,
highlighting the nuanced trade-offs between task-specific and shared learning in the context of PALs
and task scheduling.

3 Related Work

We draw inspiration from two key works for this investigation. The first is Stickland and Mur-
ray (2019), who introduced PALs to address the limitations of traditional MTL approaches with
BERT. Traditional approaches either involve fine-tuning separate models for each task, which is
computationally expensive and inefficient, or sharing all parameters across tasks, which can lead to
suboptimal performance due to task interference. PALs offer a more nuanced approach by adding
low-dimensional multi-head attention layers specific to each task in parallel to standard BERT layers.
This allows for efficient task-specific adaptations while sharing most parameters across tasks. The
authors also introduced a novel task scheduling strategy termed “annealed sampling” to mitigate the
problem of resource imbalance across tasks. Despite demonstrating promising results, their work
identified several limitations that warrant further investigation, particularly the interaction between
PALs and established anti-interference methods such as task scheduling algorithms.

The second work we draw from is Guo et al. (2018), who introduced and exhaustively tested a
dynamic task prioritization algorithm. Unlike traditional methods that treat all tasks equally or rely
on fixed schedules, their approach dynamically adjusts the priority of tasks based on their difficulty
and learning progress. By focusing on more challenging tasks, the model can allocate resources
more effectively, improving overall performance. Their method uses key performance metrics (KPIs)
to assess task difficulty and dynamically adjusts the mixing weights of each task’s loss objective.
This approach ensures that more difficult tasks receive greater attention during training, mitigating
the risk of easy tasks dominating the learning process. Their experiments demonstrated significant
performance improvements across multiple computer vision tasks, highlighting the potential of
dynamic task prioritization to enhance MTL frameworks.

In our project, we implement simplified versions of Stickland and Murray (2019) and Guo et al.
(2018)’s task schedulers alongside a simple round robin scheduler. We then test them in conjunction
with various numbers of PAL layers, another area Stickland and Murray (2019) highlighted as
necessitating future investigation. By examining these combinations, we aim to address the open
questions left by previous work and advance the understanding of effective MTL strategies in NLP.

4 Approach

4.1 Baselines

We adapted a single-task BERT classifier, initially fine-tuned for sentiment analysis in the minBERT
section of the Project Handout, into a multitask model by adding two linear classification layers for
paraphrase detection and semantic textual similarity. We updated the codebase to include task-specific
dataloaders, forward passes, loss calculations, and a total loss as the sum of the three task-specific
losses. We then generate two baselines from this classifier:

• Sentiment Data Only: This baseline serves as a lower bound, highlighting the model’s
inherent limitations when trained exclusively on a single task. It helps to illustrate the
necessity of exposing the model to a diverse set of tasks for achieving balanced multitask
performance.
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• Sequential Training: This configuration represents a naive approach to MTL. By training the
model on each task sequentially, we can observe the cumulative effect of task learning and
potential task interference. It serves as a comparative measure against more sophisticated task
scheduling methods, allowing us to assess the incremental benefits of advanced strategies.

4.2 Extension 1. Implementing PALs from Scratch

For our first extension, we follow Stickland and Murray (2019)’s architecture to implement PALs
from scratch, embedding them into our codebase. PALs are low-dimensional multi-head attention
layers added in parallel to the standard BERT layers, allowing for efficient task-specific adaptations
with significantly fewer parameters than duplicating the entire model for each new task. In our
implementation, each BERT layer is enhanced with a PAL module that consists of the following
components:

• Dimensionality Reduction: We first project the hidden states down to a lower dimension
using a linear transformation.

• Self-Attention: The projected hidden states are then passed through a self-attention mecha-
nism, which is configured with the reduced hidden size.

• Dimensionality Restoration: The attended hidden states are projected back up to the original
dimension using another linear transformation.

• Activation Function: A GELU activation function is applied to the output.

Let n be the number of PAL layers to activate, specified by the user. The code adds the PAL output
to the self-attention output of the last n standard BERT layers, followed by layer normalization and
dropout. We set the default value of n to 6, a heuristic suggested by the original paper. This reflects
the following formula given by the authors:

hl+1 = LN(hl + SA(hl) + TS(hl))

where l is the index of the layer; LN(·) is layer-norm; SA(·) is the self-attention layer; TS(·) is the
task-specific function of the form:

TS(h) = V Dg(V Eh)

where V E is a ds × dm encoder matrix; VS is a dm × ds decoder matrix with ds < dm; and g(·)
is multi-head attention with shared V E and V D across layers, not tasks. This implementation was
reported to be the highest performing version by the authors.

4.3 Extension 2. Implementing Task Schedulers

Next, we implement three task scheduling algorithms, an established method in MTL of balancing
learning across tasks and mitigating the effects of task interference.

Round Robin Scheduling is a widely used baseline in MTL due to its simplicity and effectiveness.
In this approach, the model is trained on each task in a cyclic order, ensuring that all tasks receive
equal training time. This method helps in maintaining a balanced learning process across tasks
without any explicit prioritization. Although round robin scheduling does not account for task
difficulty or resource availability, it often serves as a robust baseline for evaluating more sophisticated
scheduling strategies. In our implementation, we created iterators for each task-specific dataloader
and cycled through them in a round robin manner. The optimizer was reset, and the model parameters
were updated after processing each batch.

Annealed sampling, introduced by Stickland and Murray (2019), addresses the limitations of tradi-
tional sampling strategies by dynamically adjusting the sampling probability of tasks based on their
resource availability. The goal is to avoid favoring well-resourced tasks or overfitting low-resource
tasks. Initially, tasks are sampled with a probability proportional to the square root of the number of
training examples they have, defined as pi ∝ N0.5

i , where Ni is the number of training examples for
task i. However, to mitigate task interference over time, the sampling probability is adjusted with
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each epoch using the annealed parameter α:

α = 1− 0.8
e− 1

E − 1

where e is the current epoch and E is the total number of epochs. This method ensures that tasks are
trained more equally towards the end of the training process. In our implementation, we updated the
sampling probabilities at the beginning of each epoch based on the annealed parameter and randomly
selected tasks according to these probabilities for each batch.

Dynamic Task Scheduling aims to prioritize more challenging tasks during training, thereby allo-
cating resources more effectively and improving overall performance. In this paper, we implement
the algorithm proposed by Guo et al. (2018). We first calculate what the authors term the "KPI" κt

for each task, which is an exponential moving average (EMA) of its performance metric:

κ
(τ)
t = ακ(τ) + (1− α)κ

(τ−1)
t

where κt is the KPI for task t at iteration τ , and α is the discount factor. The difficulty, and therefore
priority, of each task is calculated by a variant of the focal loss function. The total loss for the model
uses these priorities as weights to produce a weighted sum of the task-specific losses:

LTotal(·) =
|T |∑
t=1

FL(κt; γt)Lt(·) =
|T |∑
t=1

(1− κt)
γtLt(·)

Tasks with lower KPIs are prioritized, ensuring that more difficult tasks receive greater attention. This
approach prevents easy tasks from dominating the learning process and ensures a balanced allocation
of resources. In our implementation, we dynamically calculated task priorities using the EMA of
their performance metrics and adjusted the task selection probabilities and loss weights accordingly
during training.

To our knowledge, applying dynamic task scheduling in conjunction with PALs has not been done
before and we thus consider it our original contribution. We also implement everything in the
extensions sections from scratch and provide comprehensive ablation studies in the context of PALs,
which we consider to be our primary contributions.

5 Experiments

5.1 Data

We used the Stanford Sentiment Treebank (SST) dataset for sentiment analysis, the Quora dataset for
paraphrase detection, and the SemEval STS Benchmark dataset for semantic textual similarity (STS).

Stanford Sentiment Treebank (SST) Dataset: 11,855 single sentences from movie reviews, each
annotated with one of five sentiment categories: negative, somewhat negative, neutral, somewhat
positive, or positive. It’s divided into training (8,544 examples), dev (1,101 examples), and test (2,210
examples) sets. BERT embeddings are used for sentiment classification.

Quora Dataset: 404,298 question pairs labeled as paraphrases or not. It’s partitioned into train
(283,010 examples), dev (40,429 examples), and test (80,859 examples) sets.

SemEval STS Benchmark Dataset: 8,628 sentence pairs with similarity scores between 0 (unrelated)
and 5 (equivalent meaning). It’s split into train (6,040 examples), dev (863 examples), and test (1,725
examples) sets.

5.2 Evaluation method

We use accuracy for the sentiment classification and paraphrasing tasks, measuring the proportion
of correctly predicted sentiment labels and correctly identified paraphrases respectively. We use the
Pearson correlation coefficient for the semantic similarity task. After each epoch, we evaluate on
all tasks’ development sets, saving the model with the highest total score (sum of accuracies and
adjusted STS correlation). Finally, this best model is tested on the test set, with predictions saved for
submission.
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5.3 Experimental details

We implemented the original BERT model using the "bert-base-uncased" model as per the default
project instructions. We then enhanced it in the ways outlined in the Approach section. Each task has
a dedicated classifier head: a linear layer mapping from BERT’s 768-dimensional hidden state to
5 classes for sentiment, and to a single value for paraphrase detection and STS, with the latter two
concatenating the sentence pair embeddings. For each iteration, we fine-tuned the entire BERT model,
updating all parameters alongside the additional task-specific layers. We trained using the AdamW
optimizer with a default learning rate of 1e− 5 along with a linear warmup and decay schedule, a
batch size of 8 (chosen to fit within memory constraints) and 10 epochs. All of these hyperparameters
can be set via command-line arguments to facilitate experimentation. These processes were executed
separately on an NVIDIA T4 GPU. For reproducibility, we set a fixed random seed (11711).

6 Results and Analysis

We present our results on the development set for various models and scheduling strategies in the
table below:

METHOD SST (dev) Quora (dev) STS (dev) Score (dev)

SST-ONLY BASELINE 0.406 0.369 -0.009 0.424
SEQUENTIAL BASELINE 0.396 0.368 0.268 0.466

(0 PALs) ROUND ROBIN 0.511 0.737 0.368 0.644
(0 PALs) ANNEALED 0.499 0.752 0.357 0.643
(0 PALs) DYNAMIC 0.519 0.714 0.362 0.638

(6 PALs) ROUND-ROBIN 0.463 0.737 0.377 0.630
(6 PALs) ANNEALED 0.423 0.743 0.357 0.615
(6 PALs) DYNAMIC 0.459 0.691 0.332 0.605

(3 PALs) DYNAMIC 0.500 0.708 0.322 0.623
(12 PALs) DYNAMIC 0.496 0.716 0.357 0.630

(0 PALs) ANNEALED, MB* 0.504 0.791 0.343 0.656
(6 PALs) ANNEALED, MB* 0.475 0.789 0.362 0.648
(0 PALs) ANNEALED, BOOT*, MB* 0.507 0.792 0.366 0.661
(0 PALs) ANNEALED, BOOT*, MB*, B16* 0.504 0.800 0.390 0.667

Table 1: Development set results for various models and scheduling strategies. *BOOT stands for
Bootstrapping, MB stands for More Batches, and B16 stands for batch size 16. We detail what these
mean in Section 6.3.

6.1 Isolating the Impacts of Task Scheduling Algorithms

To properly compare the impact of the schedulers and PALs, we performed ablation studies. First, we
grouped the dev accuracy on each task by task scheduler, keeping the number of PALs to 0 to isolate
the impact of schedulers. The results are summarized in the bar graph and heat maps in Figure 1.

Our baseline of having no real scheduler (sequential training) resulted in the lowest performance
across all tasks, highlighting the inefficiencies and significant task interference that arise when tasks
are learned in isolation. Despite sequential training eventually processing all training examples, the
order of task presentation likely leads to overfitting on the first task, reducing the model’s capacity
to learn subsequent tasks effectively. This sequential overfitting hinders the model’s generalization
across tasks, emphasizing the necessity of interleaved training for effective multitask learning.

The round robin scheduler significantly improved performance compared to sequential training,
achieving balanced learning across tasks. This method ensures equal training time for each task,
providing a robust baseline despite not accounting for task difficulty or dataset size differences. Its
balanced approach prevents any single task from dominating the training process.
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Figure 1: Ablation Study: Dev Accuracies by Task Scheduler.

Annealed sampling, which dynamically adjusts sampling probabilities based on resource availability,
performed better on the paraphrase task (+0.015) but slightly worse on SST (-0.012) and STS (-0.011)
compared to round robin. This result is likely due to the substantial size disparity between the
datasets: as annealed sampling still incorporates a degree of proportionality to dataset size (mitigated
slightly by adjusted sampling probabilities), the Quora dataset, being over 33 and 46 times larger
than the SST and STS datasets respectively, dominates training. This dominance is less pronounced
in round robin scheduling, where each task is sampled equally, preventing the larger dataset from
overshadowing the smaller ones.

Dynamic task scheduling performed better on SST and STS, showing an increase of 0.008 and 0.03
from round robin, but these gains seem to come at the expense of the paraphrasing task, showing a
decrease of 0.023. This outcome aligns with our expectations, as dynamic task scheduling prioritizes
tasks based on their performance metrics. The relatively lower performance of SST and STS in
our baselines indicates that these tasks are more challenging, thus receiving higher priority under
the dynamic scheduler. This adaptive prioritization ensures that more difficult tasks receive greater
attention, improving their performance while slightly reducing the focus on the easier paraphrasing
task.

6.2 Isolating the Impacts of PALs

Next, we conducted another ablation study, this time to investigate the optimal number of PALs with
the dynamic task scheduler, as this was a new task scheduling algorithm we brought to Stickland and
Murray (2019)’s work.

Figure 2: Ablation Study: Dev Accuracies by Number of PALs.

In this study, we observe two key findings that diverge from the original results presented by Stickland
and Murray (2019). Firstly, our best performance was consistently achieved with zero PALs across
all scheduling algorithms tested, as shown in Table 1.
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There are several possible reasons for this discrepancy. The original paper utilized a broader range of
tasks (8 out of 9 GLUE tasks), likely providing more opportunities for shared learning and reducing
task interference through diverse task-specific signals. In contrast, our comparatively smaller task
set of three may not have generated enough diversity in task-specific adaptations to justify the
additional complexity introduced by PALs. Moreover, the smaller datasets in our study could have
exacerbated overfitting due to the additional parameters introduced by PALs, thereby reducing overall
performance. Implementation differences or variations in hyperparameter tuning may also account
for this divergence.

Secondly, while Stickland and Murray (2019) suggested using 6 PAL layers as a heuristic for the
original BERT architecture with 12 BERT layers, our findings indicate that enhancing all 12 layers
with PALs yielded the best performance, followed by 3 PALs, and then 6 PALs. This suggests that
the increased capacity for task-specific learning with 12 PALs outweighed the risks of overfitting,
particularly in the context of our tasks and datasets. Conversely, having fewer PALs (3) provided
some task-specific adaptations without introducing too many additional parameters, which helped
prevent overfitting with smaller datasets.

These findings underscore that the optimal number of PALs is highly context-dependent. The authors
of the original paper did not provide a definitive rationale for the number of PALs, suggesting it was
based on empirical performance rather than a theoretical underpinning. Our results indicate that in
our specific context, the balance between shared and task-specific learning benefits more from either
no PALs or a larger number of PALs than the previously suggested heuristic of six. This discrepancy
in our results highlights the need for further research to systematically explore the impact of PALs
across different multitask learning scenarios, considering factors such as the number and diversity of
tasks, dataset sizes, and the interplay between task scheduling strategies and task-specific adaptations.

6.3 Further Ameliorating Tasks’ Resource Imbalance

The observed performance variations in our experiments highlighted the critical role of dataset size
and resource availability across tasks. To address the imbalance and further enhance the performance
of under-resourced tasks, we explored several optimization techniques.

METHOD SST (dev) Quora (dev) STS (dev) Score (dev)

(0 PALs) ANNEALED 0.499 0.752 0.357 0.643
(0 PALs) ANNEALED, MB* 0.504 0.791 0.343 0.656
(0 PALs) ANNEALED, BOOT*, MB* 0.507 0.792 0.366 0.661
(0 PALs) ANNEALED, BOOT*, MB*, B16* 0.504 0.800 0.390 0.667

(6 PALs) ANNEALED 0.423 0.743 0.357 0.615
(6 PALs) ANNEALED, MB* 0.475 0.789 0.362 0.648

Table 2: Subset of development set results showing impact of optimization techniques.

Firstly, we experimented with increasing the number of batches processed per iteration by eight
times. This approach ensured more frequent updates for each task within an epoch, thereby providing
additional learning opportunities for under-resourced tasks. This technique significantly improved
performance both with and without the presence of PALs by maintaining a more consistent learning
rate and reducing the risk of overfitting on smaller datasets. While this method is not directly targeted
at balancing resource disparities among tasks, its general improvement in learning efficiency helped
mitigate the overall impact of dataset imbalances.

To specifically target the under-resourced tasks, we employed bootstrapping to double the dataset
size for the SST and STS tasks. This involved augmenting the existing data by generating additional
samples through resampling with replacement. The increased dataset size provided more training
instances, significantly improving the performance of both SST and STS tasks without negatively
impacting the Quora dataset. This method effectively mitigated the data scarcity issue, allowing
the model to better generalize and learn task-specific patterns for these under-resourced tasks.
Additionally, we experimented with increasing the batch size from 8 to 16. This adjustment led to
significantly improved performance for the paraphrase and STS tasks, albeit with a slight decrease in
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performance for SST. Larger batch sizes improve gradient estimation by averaging over more samples,
leading to more stable and accurate updates to the model parameters. This stability is particularly
beneficial for tasks with smaller datasets, as it helps in reducing the variance in gradient estimates
and improves the overall learning process. The slight decrease in SST performance suggests that
while larger batch sizes offer general benefits, the specific dynamics of the SST task may require
further fine-tuning to optimize batch size effects.

Finally, we increased the number of training epochs to 40, but the improvements observed were
minimal. This suggests that while extending training duration can often sometimes enhance model
performance, task resource imbalances are the main hindrance to performance in the specific context
of MTL.

6.4 Test Set Results

Task Test Accuracy/Correlation Change
SST 0.532 +0.016
Paraphrase (Quora) 0.800 +0.136
STS 0.316 +0.048

Overall Score 0.663 +0.197

Table 3: Test set results with accuracy, correlation, and change compared to the sequential baseline.
The overall score is an aggregate metric of the individual tasks.

7 Conclusion

In this study, we developed a BERT-based multitask classifier, incorporating Projected Attention
Layers (PALs) and three task scheduling algorithms: round robin, annealed sampling, and dynamic
task scheduling. We conducted extensive experiments to determine the most effective strategies
for multitask learning and employed additional optimization techniques to mitigate trends we were
seeing in our results, namely resource imbalance and domination by one task.

Our experiments revealed that while task scheduling algorithms like dynamic scheduling and an-
nealed sampling significantly improve multitask learning performance, their interaction with PALs
needs careful management. The additional complexity introduced by PALs necessitates a stable
and consistent training process, which may not align well with the adaptive nature of advanced
task scheduling algorithms. This was evident in our results, where configurations without PALs
consistently outperformed those with PALs, highlighting the potential for inefficiencies when these
elements are not optimally integrated.

Key insights from our study include the critical importance of addressing dataset size disparities in
multitask learning scenarios. Targeted optimization strategies, such as bootstrapping and increasing
batch sizes, proved effective in mitigating the challenges posed by resource imbalances. These
techniques enhanced the performance of under-resourced tasks, demonstrating the value of tailored
interventions in achieving balanced multitask learning.

To better harness the potential of PALs in conjunction with task scheduling, future research should ex-
plore more sophisticated integration strategies that harmonize task-specific adaptations with dynamic
learning priorities. Potential approaches could involve developing hybrid methods that dynamically
adjust the number of active PALs based on real-time task performance or incorporating mechanisms
to ensure more synchronized learning signals across tasks. Additionally, investigating the impact
of different hyperparameter settings and more diverse task sets could provide further insights into
optimizing MTL frameworks.

8 Contributions and Acknowledgments

Both authors worked together on all aspects of the paper: finding the topic, literature review, co-
writing the codebase, running the models, data analysis, and writing the paper.

8



9 Ethics Statement

Given what we know about MTL and the transfer of knowledge across tasks, we must consider the
potential for bias in not just one dataset, but all of them. A model can learn biases from one task and
propagate them across all tasks, leading to biased or prejudiced predictions in applications where bias
can have significant negative impacts. For example, while bias in a simple sentiment classification
task might have limited harm, bias in a news paraphrase application could have far-reaching negative
consequences, such as the dissemination of misinformation or unfair representation of certain groups.
To mitigate this risk, we need to carefully curate our datasets, remaining critical of what we choose
to use as benchmarks. Each use of a dataset in academic research makes it more credible, so it is
crucial to scrutinize and actively intervene to mitigate these biases. This involves implementing bias
detection techniques, employing debiasing strategies, and continuously evaluating the fairness of our
models.

Another ethical concern is the overfitting of our model to dominant tasks, which can result in the
neglect of less represented but equally important tasks, such as those involving minority languages or
marginalized communities. This issue can further entrench existing inequalities in technology access
and efficacy. In our investigation, we observed the Quora dataset overpowering the smaller SST and
STS datasets despite our efforts to balance them. This imbalance can lead to a model that performs
well on tasks with abundant data but poorly on tasks with less representation, exacerbating disparities
in technology effectiveness. We found in our study that it is possible to combat these discrepancies to
some extent using techniques like dynamic task scheduling and bootstrapping, preventing the model
from overfitting to dominant tasks and promoting a more balanced performance across all tasks.

The complexity of multitask learning models, especially when incorporating advanced techniques
like PALs and dynamic task scheduling, can make them difficult to interpret. A lack of transparency
in model decisions can hinder trust and accountability, particularly when these models are used in
high-stakes applications such as medical diagnoses. In our research, we conducted multiple ablation
studies to isolate the impacts of different factors, highlighting the challenges in understanding and
explaining model behavior. Techniques such as attention visualization, probe studies, ablation
studies, and comprehensive documentation of model architecture and training processes can enhance
transparency. By providing clear insights into how the model makes decisions, we can build trust and
ensure accountability in its applications.
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A Appendix (optional)

A.1 Radar Graph of Final Accuracies

Below is a cool radar graph illustrating the final accuracies per task and configuration. This visual
representation helps compare the performance across different models and scheduling strategies.
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A.2 GitHub Repository

All code and resources for this project are available in our GitHub Repository. The repository
includes the implementation of PALs, task scheduling algorithms, and data preprocessing scripts.
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