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Abstract

Khattab et al. (2023) demonstrate 37-120% relative gains on the SQuAD, Hot-
PotQA, and QReCC evaluations with a language model (LM) with retrieval com-
pared with a vanilla LM. In this paper, we test the hypothesis that implementing
fine-tuning and retrieval for foundation models (FMs) yields significant improve-
ments on the task of predicting the priority of issues within issue tracking systems
(ITS) compared with vanilla FMs. To test this hypothesis, we curate a novel dataset
and develop an evaluation for this task called FlowTest. We found that with re-
trieval, GPT-3.5 Turbo, GPT-4 Turbo, and GPT-40 achieved relative gains of 1.2%,
3.0%, and 7.4% over the vanilla FMs. The fine-tuned GPT-3.5 Turbo model and the
fine-tuned model with retrieval achieved relative gains of 3.20% and 3.32% over
the accuracy of GPT-3.5 Turbo. These findings suggest that retrieval provides a
modest boost, particularly for larger models with strong generalization capabilities,
while fine-tuning offers significant improvements, likely due to enhanced local
knowledge about the task. As models scale, we expect retrieval to become more
important, but for fine-tuning to remain critical. We believe that our approach could
offer significant utility to organizations with ITS processes.

1 Key Information

e Mentor: Rashon Poole

2 Introduction

For software teams around the world, issue tracking systems (ITSs) have become indispensable
tools for streamlining workflow efficiency. However, there is a significant degree of subjectivity
involved in issue tracking, requiring regular team discussions and substantial effort devoted to aligning
perceptions and ensuring consistency. In this work, we focus on the assignment of issue priorities—a
primary source of ambiguity and overhead in ITSs—and investigate the effectiveness of foundation
models (FMs) as a tool to alleviate this burden and mitigate the effects of cross-team discrepancies.
Specifically, we consider the task of classifying task priority level in alignment with organizational
standards, using its textual description and metadata.

Khattab et al.|(2023) demonstrate 37-120% relative gains on the Stanford Question Answering
Dataset (SQuAD), HotPotQA, and Question Rewriting in Conversational Context (QReCC) eval-
uations with a language model with retrieval and optimized in-context learning, compared with a
vanilla language model (GPT-3.5). Motivated by these findings, we hypothesize that implementing
fine-tuning and retrieval using a relevant ITS database should yield significant improvements on our
target task of priority prediction, relative to vanilla FM baselines.

To test our hypothesis, we first curate a novel dataset and create an evaluation (FlowTest) for ITS
priority prediction, based on the public ITS repositories presented in[Montgomery et al.[ (2022). We
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proceed to implement two key methods for improved priority prediction: an ITS-based retrieval-
augmented generation (RAG) pipeline, and priority prediction fine-tuning. We proceed to run an
extensive set of experiments: first evaluating our FlowTest evaluation on three state-of-the-art vanilla
FMs (GPT-3.5 Turbo, GPT-4 Turbo, and GPT-40), before testing out the effectiveness of retrieval and
fine-tuning for improving our baseline benchmark results. We believe that our approach could offer
significant utility to real-world organizations looking to streamline their ITS processes.

3 Related Work

For decades, issue tracking services have attracted significant attention from software researchers
looking to improve the procedures used by engineering teams. Automation of various aspects of issue
tracking has been a particularly common area of investigation, for example predicting the ideal issue
assignee Jeong et al.|(2009), identifying duplicate issues |Deshmukh et al.|(2017); |He et al.|(2020);
Wang et al.| (2008)), or establishing issue linkages [Liiders et al.|(2022). Most closely related to our
task, the researchers in|[Lamkanfi et al.| (2010, [2011) present several techniques for predicting bug
severity levels from language descriptions using classical machine learning and NLP. While they see
some success in this domain, severity is less subjective and less critical to planning than priority, and
their use of classical methods limits generalization and necessitates additional engineering. Moreover,
bug reports are a relatively narrow class of issues which only apply to a small subset of software
teams. The authors of Montgomery et al.|(2022)) had this last point in mind when they introduced their
extremely large-scale accumulation of public Jira data for more universally applicable ITS research.
Here, we utilize this newly accessible data along with the dramatic recent NLP advances to create a
system with genuine value for a wide range of software and other projects.

The past few years have seen unprecedented progress in the field of NLP, and powerful, large-scale
foundation models (FMs), such as Claude (a FM released by Anthropic in March 2024), Gemini
(DeepMind| (2024)), and GPT (3, 4, and so on) (OpenAll (2020, 2024)), have become ubiquitous.
While their value as general tools for a diverse range of tasks is impressive, numerous techniques have
been developed for designing systems which can enhance the performance of FMs for a particular
task. The advent of retrieval augmented generation (Khattab et al.| (2021)) is a key improvement
on vanilla FMs, enabling the grounding of outputs in documents from a relevant database, thereby
helping to avoid hallucinations on domain specific data. Fine-tuning on task-specific data is another
technique which, when applied to FMs, can greatly benefit their performance on that test. In Khattab
et al. (2023)), the authors perform a detailed comparison between multi-stage systems of retrieval and
prediction with varying degrees of complexity. They find that even a simple, single step retrieve-
then-read pipeline (where the retrieved passage is simply appended to the prompt context) yields a
nearly 75% improvement on open domain question answering (with even greater improvements from
multi-hop systems with optimized interactions between retrieval and language modules). We aim to
carry out a similar investigation, but for the significantly less-studied task of issue priority prediction.

4 Approach

As described in Section[5.T} each item in our dataset of issues from public Jira databases consisted of
a dictionary of information about the issue, with fields ID, Summary, Project, Type (for example
Bug or Improvement), and Description, along with a ground-truth priority level (or label). These
labels were assigned to the issue by the professional software engineers who created it, presumably
with effort and internal discussions in order to maintain consistency with organizational guidelines.
After reducing and filtering the original collection of issues to a manageable set of valid samples, we
were left with 2500 training and 500 test examples, evenly distributed across priority levels.

To facilitate our priority prediction experiments on this dataset we built an evaluation framework,
FlowTest, where we iterate over issue samples from our test set, run FM inference, and calculate
priority prediction accuracy (as described below in Section[5.2). As our evaluation metric we used an
exact match between the ground-truth label and the predicted level in the FM query response string
(identified as all text between the <priority> tags). Note, malformed responses, for example due
to missing tags, were treated as failed predictions. However, malformed responses only occurred in
Experiment 1. With this infrastructure, we prepared the following two rounds of experiments.



4.1 Experimental Approach

Experiments 1-3: Experiment 1 uses GPT-3.5 Turbo as the baseline for comparison with GPT-3.5
Turbo + RAG, GPT-3.5 Turbo + FT, and GPT-3.5 Turbo + FT + RAG, as shown in Table 2. Each
FlowTest sample is converted into a formatted string representation and concatenated with the prompt
text, then fed to the FM via the OpenAl API. Predictions are extracted from the responses and
compared with the ground truth labels. The procedure is then repeated in Experiments 2—-3 using
GPT-4 Turbo and GPT-4o, serving as baselines for GPT-4 Turbo + RAG and GPT-40 + RAG.

Experiments 4-6. For retrieval, we embedded text representations (paired with ground-truth priority)
using OpenAl’s text-embedding-3-large model into a vector database. During the model’s forward
pass, we embed the input issue sample and evaluate the cosine similarity with pre-calculated em-
beddings. The highest similarity vector is selected, and the corresponding text representation and
label are inserted into the prompt for in-context learning. The procedure is then repeated with GPT-4
Turbo and GPT-40 for the GPT-4 Turbo + RAG and GPT-40 + RAG benchmarks.

Experiments 7-8. The training set is reformatted for the OpenAl API fine-tuning framework, and
a job is initiated using a prediction loss similar to our evaluation metric: an exact match between a
predicted priority string within <priority> tags. The resulting model weights are then evaluated.
Experiment 8 then combines fine-tuned weights with retrieval-augmented in-context learning.

S Experiments

We began with the hypothesis that retrieval-augmented in-context learning and fine-tuning would
improve the performance of vanilla foundation models (FMs) in predicting the priority level of an
issue in issue tracking systems (ITSs). As described in Section[d] we first used a dataset of issues to
develop a novel evaluation, which we termed FlowTest, specifically for this task. We then evaluated
vanilla FMs, as well as FMs enhanced with retrieval-augmented in-context learning and fine-tuning,
using FlowTest. The dataset and experiments are detailed in the following subsections.

5.1 Data

We used a dataset of issues from Jira ITSs from Montgomery et al.[(2022)), selecting a subset of the
fields shown in Figure 1 to ensure that suggestions were based solely on the task itself, excluding
factors such as later comments or the name of the assignee. We then masked the priority of the issues
and tasked the model configurations shown in Table 2 with predicting the priority level.

The inputs for the model configurations that we evaluated, as illustrated in Figure 4, are JSON
representations of the issues. The output is the predicted priority level, which is added in a comment
in Figure 4 below the JSON representation. The priority levels are Blocker, Critical, Major, Minor,
and Trivial.

5.2 Evaluation Method

Our goal is to measure how effectively a model configuration can predict the priority level of an issue.
This capability would enable the model to suggest priority levels in issue tracking systems, thereby
helping to streamline task management.

We developed a novel evaluation method called FlowTest by sampling 500 issues from the Jira dataset
from Montgomery et al.| (2022). These issues were structured with the relevant information for
prediction, and the priority levels were masked. We then evaluated whether a model configuration
correctly predicted the priority level, assigning a score of 0 or 1 for each issue. The accuracy of the
model configuration was calculated as the average score across the 500 issues in FlowTest.

We believe this is a robust dataset because it reflects hundreds of human judgments, often requiring
consensus-building among different people working together. Our goal is to predict these human
judgments ahead of time, thereby streamlining the coordination and decision-making process.



issue N\ fields comment
id INT summary STR id INT
fields description STR body STR
changelog comments author PO—
issuetype updateAuthor po—|
changelog project.name STR created DATETIME
arALINT components LIST<STR> updated DATETIME
s labels LIST<STR>
maxResults INT issuelinks N
total INT issueType
o subtasks dINT
histories fixVersions LIST<STR> i
DXVSIsions description STR
status.name STR name STR
history priority.name STR —
created DATETIME resolution.name STR - -
author timeestimate INT i issuelink
items ”\ timespent INT id INT
creator inwardIssue
reporter Joutwardissue
item assignee type.name STR
field STR votes.votes INT
fieldtype STR watches.watchCount INT
from INT created DATETIME person —
fromString STR updated DATETIME key STR
to INT duedate DATETIME name STR
toString STR resolutiondate DATETIME active BOOL

Figure 1: Jira database scheme from Montgomery et al.|(2022]).

5.3 Experimental Details

We conducted three rounds of experiments. Initially, we evaluated the vanilla FMs GPT-3.5 Turbo,
GPT-4 Turbo, and GPT-40. Next, we employed the text-embedding-3-large model to generate a
vector database of 2,500 issues, implementing retrieval-augmented in-context learning with the same
FMs. In the final round, we fine-tuned the GPT-3.5 Turbo FM and assessed its performance both with
and without retrieval-augmented in-context learning.

Experiments 1-3. This stage involved extensive prompt engineering to maximize model performance.
We employed JSON and tagging techniques to ensure consistent prediction formatting, enabling
reliable extraction from model outputs. Most of the prompt engineering was focused on GPT-3.5
Turbo, and we observed that the same prompt generalized effectively to the larger foundation models,
maintaining performance levels.

Experiments 4-6. In this stage, we created a vector database of 2,500 issues using the fext-
embedding-3-small model. For each new call, we retrieved the most similar issue based on cosine
similarity between the embeddings. While the embedding process was performed without masking
the priority level, the input issue information used to query the database didn’t include priority. We
passed the resulting most relevant issue into the context of the FM, expecting that one-shot in-context
learning would enhance FM performance. We used one-shot learning because of the limitation of FM
context length.

Experiments 7-8. In this stage, we used a training set of 2, 500 issues from the Jira dataset, masking
the priority level, and transforming the issues into the same format as the FlowTest evaluation. We
then fine-tuned GPT-3.5 Turbo on these examples. Table 1 shows the fine-tuning time for the model,
while Figure 2 illustrates the training loss for fine-tuning across the epochs, demonstrating smooth
convergence. Finally, we applied the same retrieval process as before to the fine-tuned model.

Model Configurations Training Time (HH:MM:SS)
GPT-3.5 Turbo + FT 01:24:35
GPT-3.5 Turbo + FT + RAG 01:24:35

Table 1: Training Time
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Figure 2: Training loss from fine-tuning GPT-3.5 Turbo.

5.4 Results

We found a TestFlow accuracy of 21.7%, 28.2%, and 29.6% for GPT-3.5 Turbo, GPT-4 Turbo,
and GPT-4o, respectively, compared to a random sampling performance of 14.3%. With retrieval-
augmented in-context learning, GPT-3.5 Turbo, GPT-4 Turbo, and GPT-40 achieved relative gains of
1.2%, 3.0%, and 7.4% over the vanilla FMs. The fine-tuned GPT-3.5 Turbo FM and the fine-tuned
model with retrieval achieved relative gains of 32.0% and 33.2% over the accuracy of GPT-3.5
Turbo. The TestFlow accuracy and relative gains of the model configurations are shown in Table 2,
while Figure 3 illustrates the TestFlow accuracy over the course of the evaluation for each model
configuration on a scale of O to 1.

As illustrated, the larger FMs outperform the smaller ones on this task. Although all models perform
better than random sampling, the TestFlow accuracy of GPT-3.5 Turbo is close to random, and
GPT-40 is only correct about a third of the time. These results serve as our baselines to test if
retrieval-augmented in-context learning and fine-tuning can improve performance, as hypothesized.
Indeed, retrieval-augmented in-context learning results in relative gains of 1.2%, 3.0%, and 7.4%
over each of the vanilla FMs. Notably, the gains are larger for the more advanced FMs, showing their
greater ability to generalize in one-shot in-context learning.

We also find that fine-tuned GPT-3.5 Turbo significantly outperforms the vanilla GPT-3.5 Turbo,
achieving a relative gain of 32.0%. It also surpasses all the model configurations with retrieval but
without fine-tuning, demonstrating the substantial benefits of fine-tuning for this task. Notably, the
fine-tuned GPT-3.5 Turbo exhibits the same relative gains from adding retrieval as GPT-3.5 Turbo
without fine-tuning. This shows that while the fine-tuned model has adapted to the task, its ability
to generalize remains the same as the model without fine-tuning and does not benefit more from
retrieval than GPT-3.5 Turbo does.

Our findings indicate that retrieval provides a modest boost, particularly for larger models with strong
generalization capabilities, while fine-tuning offers significant improvements, likely due to better local
knowledge about the task. We expected retrieval to have a larger effect, but it appears that a single
relevant example does not suffice to fully capture the context, necessitating more local knowledge.
This suggests that as models scale, the effectiveness of retrieval will improve, but fine-tuning remains
crucial for this dataset due to its inherent complexity.

GPT-3.5 Turbo + FT + RAG achieved an accuracy of 0.549%, which translates to more than a 50%
chance of making the correct prediction. This is impressive given the difficulty humans face in
distinguishing between Minor and Trivial or Major and Critical tasks. We believe that fine-tuning
GPT-4 Turbo or GPT-40 could yield even better results. There is further discussion in Section[6]
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Figure 3: FlowTest accuracy of model configurations over the course of the evaluation.

Model Configurations FlowTest Accuracy Relative Gains
Random 14.3% -

GPT-3.5 Turbo 21.7% -

GPT-4 Turbo 28.2% -

GPT-40 29.6% -

GPT-3.5 Turbo + RAG 22.9% 1.2%

GPT-4 Turbo + RAG 31.2% 3.0%

GPT-40 + RAG 37.0% 7.4%

GPT-3.5 Turbo + FT 53.7% 32.0%
GPT-3.5 Turbo + FT + RAG | 54.9% 33.2%

Table 2: FlowTest accuracy and relative gains from RAG + FT of model configurations.

6 Analysis

In this section, we conduct a qualitative evaluation using chain-of-thought outputs from the model
configurations to identify the sources of performance improvement resulting from retrieval-augmented
in-context learning. By examining examples where GPT-40 and GPT-40 + RAG reasoned similarly,
we observed that the latter benefited from referencing a similar issue within the same project. This
additional context enabled better calibration of assigned priority levels, as having a reference issue
helps determine whether the priority level should be lower, the same, or higher.

We further analyze model configuration predictions, identifying consistent correctness and errors
in some samples. Two examples are shown in Figure 4. The model configurations consistently
successfully predict Issue 1 due to the clear task description, which does not require extensive project
knowledge to assess the priority level. Conversely, Issue 2 demands additional project context to
understand the importance of MonitorMemory. The models need to know if MonitorMemory is a
critical component of the project or merely a logging tool. Lacking this context, the models tend to
predict a higher priority level than is warranted.



// Issue 1

{’Issue ID’: ’13052868°,

’Issue Summary’: ’Make multiple COUNT(DISTINCT) message state workarounds’,

’Project’: ’IMPALA’,

’Issue Type’: ’Improvement’,

’Description’: ’The message for a query with multiple COUNT(DISTINCT) °
’currently looks like:\n’
7\n7
’[localhost:21000] > select count(distinct x), count(distinct ?’
’y) from t1;\n’
ERROR: AnalysisException: all DISTINCT aggregate functions ’
’need to have the same set of parameters as count(DISTINCT x); °
’deviating function: count(DISTINCT y)\n’
7\n7
’How about adding an INFO message after the error saying ’
’something like:\n’
;\n)
>INFO: If estimated counts are OK, replace COUNT(DISTINCT) °
>with NDV(). Enable the APPX_COUNT_DISTINCT query option to ’
’perform this rewrite automatically.’}

// Priority Level: Minor
// Issue 2

{’Issue ID’: ’13037067’,

’Issue Summary’: ’MonitorMemory produces UnsupportedOperationException’,

’Project’: ’Apache NiFi’,

’Issue Type’: ’Bug’,

’Description’: ’{code}\n’
’[na:1.8.0_111] Caused by: °’
’java.lang.UnsupportedOperationException: Usage threshold is ’
’not supported at ’
’sun.management . MemoryPoolImpl.setUsageThreshold (MemoryPoolImpl. java:114)

b
>“[na:1.8.0_111] at ?
’org.apache.nifi.controller.MonitorMemory.onConfigured(MonitorMemory.java:178)
3

>“[na:nal ... 16 common frames omitted\n’
’{code}\n’
7\n7
’MonitoryMemory checks if ’
’memoryPoolBean.isCollectionUsageThresholdSupported()) and if °
’so it eventually calls ’
’monitoredBean.setUsageThreshold(calculatedThreshold), but °’
’setUsageThreshold then checks isUsageThresholdSupported() so ’
’it can throw UnsupportedOperationException. ’}

// Priority Level: Minor

Figure 4: Jira issues from the FlowTest evaluation.

Through chain-of-thought prompting, we discern differences in model reasoning. Notably, GPT-40
employs a more consistent reasoning format compared to GPT-3.5 Turbo and GPT-4 Turbo, and
demonstrates greater confidence in its predictions. These insights underscore the importance of both
retrieval-augmented in-context learning and fine-tuning. While retrieval provides valuable contextual
references that enhance model predictions, fine-tuning offers significant performance improvements
by adapting the model to the specific nuances of the dataset. Our analysis indicates that combining
these approaches effectively enhances model accuracy and reliability in predicting issue priorities.



7 Conclusion

Our hypothesis that fine-tuning and retrieval using a relevant ITS database would significantly
improve issue priority prediction over vanilla FM baselines has been validated. We introduced a
novel dataset and evaluation framework, termed FlowTest, for ITS priority prediction, based on the
public ITS repositories from Montgomery et al.|(2022). With retrieval, GPT-3.5 Turbo, GPT-4 Turbo,
and GPT-40 achieved relative gains of 1.2%, 3.0%, and 7.4% respectively over the vanilla FMs. The
fine-tuned GPT-3.5 Turbo and the fine-tuned model with retrieval achieved substantial relative gains
of 32.0% and 33.2% over the baseline GPT-3.5 Turbo.

Our findings indicate that retrieval provides a modest boost, particularly for larger models with
strong generalization capabilities. However, fine-tuning offers significant improvements, likely due
to enhanced local knowledge about the task. Although we anticipated a more substantial effect
from retrieval, it appears that a single relevant example does not fully capture the necessary context,
underscoring the importance of fine-tuning for this complex dataset. As models scale, we expect
retrieval effectiveness to improve, yet fine-tuning remains crucial. Notably, the highest accuracy of
0.549% achieved by GPT-3.5 Turbo + FT + RAG is impressive given the difficulty humans face in
distinguishing between task priorities such as Minor versus Trivial and Major versus Critical.

Qualitative evaluations using chain-of-thought outputs revealed differences in reasoning between
the models. While retrieval provides valuable contextual references that enhance model predictions,
fine-tuning significantly improves performance by adapting the model to the specific nuances of the
dataset. Our analysis demonstrates that combining these approaches effectively enhances model
accuracy and reliability in predicting issue priorities, suggesting substantial utility for real-world
software teams seeking to streamline their ITS processes.

The limitations of the project include a relatively small and less curated dataset of 500 samples
in FlowTest, which is sometimes difficult for humans to interpret. The vector database of 2, 500
issues, while useful, could have been expanded given the 1,000, 000 issues in the Apache dataset, to
provide more similar issues for one-shot in-context learning. Future work should focus on refining
the evaluation and exploring advanced retrieval-augmented in-context learning techniques, such as
DSPy, at higher costs to further increase accuracy. Additionally, developing a tool that predicts issue
priorities for task management could be highly beneficial for organizations.

8 Ethics Statement

Challenge 1. When using model configurations to assign priority levels to tasks within organizations,
there is a possibility that these models will inherit biases from the pre-training and fine-tuning stages.
While identifying information has been removed, it is possible that the model configurations have
learned biases based on writing style. Before deploying the model configurations in organizations, it
is advisable to audit the pre-training and fine-tuning datasets and monitor the model outputs for bias.

Challenge 2. While the FlowTest accuracy of GPT-3.5 Turbo + FT + RAG is 54.9%, there is a risk
of over-reliance on these models for assigning priority levels to tasks within organizations. Before
deployment, it is important to communicate that these models are tools to support rather than replace
decision-making. Before deploying model configurations in organizations, it is advisable to prompt
the models to provide a rationale for their suggestions, to promote transparency and accountability.
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