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Abstract

In this paper, we explore a novel approach to multi-task model ensembling — the
Power Set Ensemble, or PowerBERT — and its potential to optimize performance
for three downstream NLP tasks: semantic textual similarity, paraphrase detection,
and sentiment analysis. Ensembling the seven models within the power set of
tasks with two different weighing schema — voting and weighted — achieved
overall accuracy rates of 76.8% and 77.0% respectively, which is competitive
with well-known models. As part of our implementation, we applied an array of
techniques including cosine similarity fine-tuning, L2 regularization, and gradient
surgery over the single and multi-task models that comprise PowerBERT. In doing
so, we explored the potential for multiple techniques working in tandem to further
enhance model performance.

1 Key Information

* Mentor: No
» External Collaborators: No
* Sharing project: No
* Team Contributions:
— Eric Lee implemented cosine similarity fine-tuning with L2 regularization, trained
fine-tuned single-task models, and assembled the final PowerBERT ensemble models.
— Jeanette Han completed minBERT implementation, implemented gradient surgery for
multitask training, and trained fine-tuned multitask models.
— Kevin Song conducted research into implementation of extensions, experimented with
ensemble schemes, and led writing and editing of the paper/poster.

2 Introduction

Powerful LMs, namely BERT (Devlin et al.| (2018))), have enabled rich exploration of optimization
techniques to improve performance on NLP tasks such as semantic textual similarity (STS), para-
phrase detection (PD), and sentiment analysis (SA). Many recent proposals offer novel solutions to
address limitations of such LM architectures. For example, multi-task learning with gradient surgery
enables concurrent task learning and enhanced performance on multiple tasks. Another significant
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improvement is cosine similarity fine-tuning for STS tasks, which more accurately captures semantic
similarity by comparing the orientations of embedding vectors rather than their magnitudes. However,
there is minimal research into the combination of such optimization techniques to further enhance
model performance within an extensive ensemble to train intermediate combinations of tasks.

To address this gap, we began with a pre-trained BERT model (minBERT) and implemented various
techniques including cosine similarity fine-tuning and multi-task learning with gradient surgery
independently. Additionally, we tested a novel approach to ensembling by creating an individual
model for each element of the power set of tasks and ensembling their results by both a voting system
and a performance-based weighting scheme. PowerBERT, our final ensemble model, achieved the
best performance rates of all the individual models and techniques experimented with.

3 Related Work

Vaswani et al.[(2017) was the landmark paper that initially proposed the transformer architecture,
inspiring development of more robust LMs such as BERT (Devlin et al.| (2018]))), which featured
bidirectional text processing and popularized robust and unsupervised pre-training, with fine-tuning
for specific downstream tasks. The BERT architecture has laid a crucial foundation for diverse
experimentation due to the inherent flexibility of the model and its potential for extension. For
example, additional layers can be added to test techniques such as regularization, or to train on
specific tasks by simply replacing the top layer with a task-specific layer. A prominent example is
RoBERTa (Liu et al.[(2019)), a more robust transformer-based model that is more rigorously trained
and utilizes a more flexible tokenization method (byte-pair encoding) as opposed to WordPiece
embeddings. Notably, the ROBERTa paper also introduces the idea of ensembling: training on
multiple instances of RoOBERTa with different initializations and then combining their outputs yielded
better results due to reduction in variance/noise and better generalization.

One such optimization technique built over the BERT model is the multi-task learning framework,
proposed by [Qiwei Bi| (2022), to improve the quality and accuracy of news recommendations.
This framework, named MTRec, employs BERT as the news encoder and additive attention as
the user encoder to address the main task of news recommendation, as well as two auxiliary tasks
— category classification and named entity recognition (NER) — to capture category and entity
information. MTRec simultaneously optimizes three tasks that capture holistic information about
user preferences for and engagement with news content: (1) click prediction (will a user click on a
news article?) (2) reading duration prediction (how long will a user read this article for?), and (3)
news category classification (what category of news should this article be classified as?). An ablation
study conducted within the paper affirms the equal contribution of both auxiliary tasks in optimizing
the main task, which inspired our own power-set model design.

Additionally, Reimers and Gurevych| (2019) introduce Sentence-BERT (SBERT), which is built
over BERT and RoBERTa and is optimized specifically for NLP tasks such as sentence similarity,
clustering, and semantic search. The motivation behind SBERT is to alleviate the computational
overhead and training time of existing NLP structures: instead of requiring both input sentences
to be fed into the model like BERT and RoBERTa, SBERT simply harnesses cosine similarity to
determine STS, significantly decreasing computational overhead and reducing the time needed to
determine the most similar sentences in a set of n = 10, 000 sentences from 65 hours on a modern
V100 GPU to just 5 seconds.

4 Approach

Noting that techniques such as cosine similarity, multitask learning, and ensembling have been
independently confirmed to improve pre-trained BERT model performance, our approach aims to
create a robust BERT model by combining these strategies within a novel ensemble. Specifically,
we aim to see whether this combination of techniques improves performance on three NLP tasks:
sentiment analysis (SA), paraphrase detection (PD), and semantic textual similarity (STS). As our
baselines, we implement the provided minBERT model which, without any additional frameworks or
optimization, attained an overall dev score of 47.1%. This served as a baseline standard of comparison
to gauge model performance.
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Figure 1: PowerBERT framework. Note that power set models for STS task additionally leverage
cosine similarity fine-tuning.

Consider the three distinct tasks that the multi-task model must respond to: SA, PD, and STS.
We take the power set of these tasks, which (excluding the resulting empty set) encompasses all
possible combinations of these tasks that the model can simultaneously learn. This includes each
individual task, all pairwise combinations, and the combination of all three tasks, resulting in 7 subsets:
{SA},{PD},{STS} {SA+PD},{PD+ STS},{STS+ SA},and {SA + STS+ PD}. Our
critical novel contribution is training fine-tuned versions of these seven models and combining them
in an ensembled model whose output is a weighted average of the individual model outputs. We
tested two ensembling schema for PowerBERT. In the voting ensemble, the logits for each model
relevant to the given task are evenly averaged (arithmetic mean), such that each model has an equal
"vote" in the final output. In weighted ensemble, logits from models with higher accuracy are assigned
greater weights. The motivation behind this power set ensemble is to combine the beneficial effects
of specialization in the single-task models with insights about complex interactions learned in the
multitask models for more robust predictions.

In order to maximize the performance of PowerBERT, we implemented an array of extensions to
maximize the performance of each individual model within the power set:

L2 Regularization. To reduce model complexity, we utilize L2 regularization, a technique pioneered
by/Hoerl and Kennard|(1970), to address overfitting, which we diagnosed via noticeable drops between
dev and test set performance. We implemented this by adding an L2 regularization term to the loss,
which captures the model complexity by summing the squares of all n feature weights:

L2 regularization term = ||w||2 = w} 4+ w3 + ... + w? (1)

This regularization method penalizes significantly higher weights, enabling us to minimize loss and
model complexity concurrently.

Cosine Similarity Fine-Tuning. Because STS, one of our tasks of interest, involves comparing
embeddings to determine how similar they are, we can measure the semantic distance between
embeddings with cosine similarity as a fitting metric. Cosine similarity simply utilizes the cosine of
the angle between two embeddings as a metric for their similarity:

. . . u-v
cosine-sim(u, v) for embeddings u, v =

@
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In particular, during training for STS, we return the cosine similarity of the embeddings after the
forward pass, with absolute value and scalar multiplication applied to transform the prediction to



match the range of the label (shifting the range from [-1, 1] to [0, ..., 5]). In training, we take the
mean squared error between this transformed prediction and the label.

Multitask Fine-Tuning. Multitask fine-tuning allows us to train models that generalize to multiple
tasks simultaneously. In our approach, we cycled through the each dataset in alternating loops for
each epoch.

However, we noticed in our early development that increased accuracy in one task was often paired
with lack of progress in another. To counter this issue, implemented gradient surgery in each of our
multitask learning models, a technique introduced by |Yu et al.| (2020) that projects the gradient of the
i-th task, g;, onto the normal plane of another conflicting task’s gradient, g;:

gi - 9j
Ilg;11?

9i=9gi — * g 3)

This eliminates potential gradient direction conflicts between tasks during backpropagation and
allows more streamlined progress toward high accuracy among all tasks.

5 Experiments

5.1 Data
We utilize four different datasets to train the three associated tasks:

» Sentiment analysis: Stanford Sentiment Treebank dataset (11,855 sentences with sentiment
labels), CFIMDB dataset (2,434 polar movie reviews with positive/negative labels)

* Paraphrase analysis: Quora dataset (404,298 question pairs with boolean labels)

* STS: SemEval STS Benchmark Dataset (8,628 sentence pairs labeled O to 5 on the STS
scale)

We use the given train/dev/test splits for these datasets, with no additional preprocessing.

5.2 [Evaluation Method

We used the dev and test set accuracy metrics detailed in Section 4.4 of the Default Project specifica-
tions to evaluate model performance: label accuracy for sentiment analysis and paraphrase detection,
and Pearson correlation for semantic textual similarity. Additionally, given that the original paper
achieved 80.78% accuracy on STS with cosine-similarity, we treat this as a baseline for performance
for PowerBERT.

5.3 Experimental Details

For every model, we trained using an Adam optimizer with weight decay le-4, L2 regularization,
and a learning rate le-5 for 10 epochs on Google Cloud GPUs. For models trained for the STS task,
cosine similarity fine-tuning was implemented with the transformation of logits to match label ranges
as described in Section 5. For all multitask training models (trained on either two or three tasks),
gradient surgery was applied after each alternating loop cycling through training examples in the
relevant datasets.

After creating the seven individual models each training on a different subset of tasks, the individual
models were loaded into the ensemble model, which provided predictions by aggregating logits
by either the voting ensemble or weighted ensemble weighing schemes. Note that in the ensemble
models, weights are only given to relevant models for each task. Thus, for each task in the voting
ensemble model, the logits from each relevant individual model each had weight i (ex. for the SA
task, the logits from each of the {SA}, {SA, PD}, {SA, STS} and {SA, PD, STS} models is i). Then,
for each task in the weighted ensemble model, the logits from the relevant models each had weight

proportional to that model’s accuracy on the dev set (ex. for the SA task, the weight for the {SA}

model is {SA} Dev Accuracy )
{SA} Dev Accuracy + {SA, PD} Dev Accuracy + {SA, STS} Dev Accuracy + {SA, PD, Dev STS} Accuracy /"
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5.4 Results

The dev set results of our intermediate and final models are as follows:

Model Sentiment Paraphrase STS
(CS = Cosine Similarity Fine-Tuning, Analysis Detection Pearson
GS = Gradient Surgery, Accuracy Accuracy Correlation
L2 =12 Regularization)
minBERT 0.318 0.632 -0.070
Naive SA, PD, STS 0.337 0.683 0.204
SA, PD, STS (CS) 0.473 0.847 0.454
Fine-Tuned SA (L2) 0.515 0.385 0.259
Fine-Tuned PD (L2) 0.203 0.854 0.519
Fine-Tuned STS (CS, L2) 0.202 0.382 0.772
Fine-Tuned SA, PD (GS, L2) 0.478 0.857 0.534
Fine-Tuned PD, STS (CS, GS, L2) 0.219 0.854 0.730
Fine-Tuned SA, STS (CS, GS, L2) 0.499 0.474 0.718
Fine-Tuned SA, PD, STS (CS, GS, L2) 0.470 0.843 0.705
Single-Model Ensemble 0.515 0.854 0.772
Voting PowerBERT Ensemble 0.529 0.869 0.832
Weighted PowerBERT Ensemble 0.537 0.873 0.830

We observe that each extension (namely cosine similarity fine-tuning, gradient surgery, and L2
regularization) contributed to increased performance across all three tasks in early development.
Further, each of the fine-tuned subset models clearly demonstrated strong performance on the tasks
they were fine-tuned on and weak performances on the tasks they were not fine-tuned on—showing
the effectiveness of the fine-tuning. A significant insight is that while the single-task models achieved
higher scores for the task they focused on, the multitask models achieved scores that were lower but
still strong across tasks. This observation lends support to the power set framework to balance the
strengths and weaknesses of each model.

As a point of comparison, we trained a single-model ensemble model, serving as a naive ensemble
of the three single-task fine-tuned model using the direct logits from each individual model for the
corresponding task. Evidently, this approach is relatively successful (achieving greater accuracy on
all tasks in comparison to the multitask model trained on all tasks), validating the effectiveness of
ensembling models. Simultaneously, the performance of the single-model ensemble model validates
the necessity of the power set ensemble framework, as the two PowerBERT models incorporating all
seven individual models demonstrate superior results across all tasks.

These results are echoed on the test set as well:

Model Sentiment Paraphrase STS Overall
Analysis Detection Pearson Accuracy
Accuracy Accuracy Correlation
Single-Model Ensemble 0.524 0.858 0.796 0.760
Voting PowerBERT Ensemble 0.527 0.872 0.809 0.768
Weighted PowerBERT Ensemble 0.534 0.872 0.806 0.770

On the test set, the success of the powerBERT models in comparison to the single-model ensemble
validate the necessity of incorporating the individual multitask models as a power set configuration
in the ensembled model. Further, the slight edge in the weighted ensemble schema suggests that
the choice of weighting scheme within the power set ensemble is a factor in performance, and that
weighing by dev set accuracy shows promise as a method. Overall, the overall peak accuracy we
achieved was 77.0% with weighted ensemble PowerBERT, which seems comparable with top models
(top 30 on leaderboard) and meets the benchmark 0.808 STS score from the original cosine similarity
fine-tuning paper (Reimers and Gurevych|(2019)).



6 Analysis

Through the various multitask finetuning extensions we implemented within our novel ensemble
structure, we were able to achieve increases across the various NLP tasks. We further explored
visualized distributions of our model’s results for the similarity and sentiment datasets to identify
performance trends and pinpoint potential areas of improvement.

Figure 2 (Left) shows that the vast majority (87%) of our model’s errors deviated by only one rating
value away from the correct labels. Inspecting these results combined with the counts of rating
values in Figure 2 (Right) indicates that the model accurately identifies general positive or negative
sentiment but struggled to discern between differences in severity. We see in Figure 2 (Left) that
most of the model’s outputs are clustered around the middle values (2-4), which reveals a lack of
ability to distinguish highly positive or negative sentiments. We discover that the issue arises most
commonly in cases of negative reviews with advanced semantics like colloquial sayings or sarcasm.
For example the sentence: "If the first Man in Black was money, the second is small change" received
a rating of 2 (Neutral) from our model when the actual rating was 0 (Very Negative). Inability
to capture the meaning of the negative relationship between "small change" and "money" is most
likely what led to a neutral rating. Across the results, these nuances in semantics demonstrate the
contextual challenges we faced in sentiment level prediction. Additionally, we examined that some of
the dataset labels could have been ambiguously determined. For example the review: "A delightful
coming-of-age story." received a rating of 4 (Very Positive) from our model when the actual rating
was 3 (Positive). We believe there can be arguments to support why PowerBERT gave a more positive
rating, suggesting that there could be inconsistencies in the Dev or training set leading to these small
differences.
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Figure 2: (Left) Distribution of difference between SST Dev set and model ratings for all occurrences
of error. (Right) Counts of ratings for SST Dev set and model across score range. Scores ranges from
0 (Very Negative) to 4 (Very Positive)

Looking at the STS development dataset, we noticed that our final model generally predicted scores
within a range of one from the accurate rating as seen in Figure 3 (Left), but issues arose in the
lower ranges of scores. The model had much greater difficulty identifying scores in the lowest bucket
(0-0.5) from Figure 3 (Right) but was quite accurate for the middle range. Our model appears to
assign higher similarity scores when sentences have the same word tokens, even if their meaning and
use is different. The sentence pair "Work into it slowly." and "It seems to work." received a rating of
2.7 (Neutral) from our model when the actual rating was 0 (Not at all related). Even if this example
sentence pair is quite short in length, there should be enough context for our model to accurately
determine that the word "work" is used differently in each. These discrepancies could reveal that our
model might rely too heavily on token similarities rather than evaluating semantic embeddings.
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Figure 3: (Left) Distribution of score difference between STS Dev set and model ratings. (Right)
Counts of ratings outputted by STS Dev set and model across score range. Scores ranges from O (not
at all related) to 5 (same meaning)

7 Conclusion

PowerBERT was able to achieve significant improvements on top of the basic BERT model through
our exploration of advanced fine-uning techniques such as Cosine Similarity Fine-Tuning, Gradient
Surgery, L2 Regularization and a novel power set ensemble structure. Our final model generated
competitive results, yielding an overall test set result of 0.77 and an STS score matching the original
[Reimers and Gurevych|(2019) paper. Our ensemble model combined the strengths of various models
in the power set to create a robust model demonstrating proficiency on multiple tasks.

We acknowledge limitations in our model in the diversity of our training data and difficulty identifying
advanced linguistic phrases - seen particularly in the STS development set. Since we only trained and
evaluated on the provided datasets, we are unsure of the capabilities of our model on other NLP tasks
as well as more diverse cases.

To improve PowerBERT in the future, we would want to continue developing the ensemble model
and focus on exploring different methods for weighing the models in the power set. Currently, we
have a strong baseline weighing schema by development set accuracy, but we strive to improve this
method and determine the most optimal weights. We plan to continue investigation with future work
training another neural network to learn the optimal weights to attribute to each model. Given the
improvement with the implementation of the weighted ensemble schema, we are optimistic that this
change will yield further improvements in accuracy.

8 [Ethics Statement

There are several potential ethical challenges posed by our work. While cosine similarity fine-tuning
clearly optimizes model performance, this is predicated on the assumption that the embeddings used
to calculate cosine similarity do not contain bias themselves. However, this is difficult to confirm
given the sheer size of the datasets, as well as the usage of corpora that are open to public contribution
such as IMDB and Quora. If embeddings encode bias — for example, associating certain genders with
certain professions, placing them closer semantically — the cosine similarity will simply reinforce
the proximity of the embeddings, further propagating this encoded bias. An ideal mitigation measure
would be to parse datasets and remove clearly biased datapoints, but this may be impractical and is
ultimately still a subjective process. A more practical measure could involve applying techniques that
combat overfitting (e.g. smoothness-indusing adversarial regularization) and debias parameters to
reduce the severity of the issue.

Furthermore, training multi-task and ensemble models will be computationally expensive and
resource-intensive, which can have non-negligible environmental impacts (Strubell et al| (2019));
in our approach alone, our final PowerBERT ensemble models comprise 7 unique models, each
requiring its own training. Furthermore, our results may validate the development of models with
increasingly significant training resource expenditure, especially since the number of individual
"power set" models will increase exponentially with the number of tasks. However, our findings




underline that multi-task learning still enhances the performance of BERT models, even when trained
on comparatively smaller datasets than those of the original papers (Qiwe1 Bi|(2022)), Reimers and
Gurevych|(2019)); thus, it is important to assert that smaller LMs can still match the performance of
massive LMs. Furthermore, we made conscious design choices within our framework to minimize
overhead complexity where possible; for example, we utilize L2 Regularization over SMART Loss to
more effectively deploy computational resources.
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