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Abstract

Fine-tuning pre-trained language models such as BERT for downstream tasks is es-
sential but often computationally expensive. Parameter-efficient fine-tuning (PEFT)
methods aim to optimize performance while minimizing resource utilization. In
this project, we investigate PEFT techniques for minBERT across various down-
stream tasks. We apply the LoRA method to reduce parameters and computational
complexity. Furthermore, we integrate PEFT with multi-task learning paradigms,
incorporating techniques such as the DoRA extension and orthogonal adaptation.
Our approach aims to achieve efficient fine-tuning, providing a balanced trade-off
between performance and resource utilization.

1 Key Information to include

• TA mentor: Johnny Chang; External collaborators (if no, indicate “No”): No; External
mentor (if no, indicate “No”): No; Sharing project (if no, indicate “No”): No

• Contributions:

– Zhen Wu: Implement LoRA for multi-task setting and run experiments. Write Sec-
tion 4.2, Section 5, and Section 6.2.

– Genghan Zhang: Implement the last layer, sequential training, LoRA and DoRA for
single task. Write Section 4.1, Section 6.1, and Section 7.

– Alexa Hu: Implement minBERT handout section 4.2 and 4.4. Write Abstract, Section 2,
Section 3, and Section 8 of report.

2 Introduction

The fine-tuning of pre-trained large language models for downstream tasks has become a cornerstone
of modern natural language processing. These models are initially trained on vast corpora, requiring
adaptations to perform specific tasks effectively. However, this fine-tuning process often demands
substantial computational time and resources. To address this issue, the Parameter-Efficient Fine-
Tuning (PEFT) technique has been developed to retain the performance benefits of full fine-tuning
while significantly reducing the resource requirements.

In this paper, we delve into the application of PEFT techniques to minBERT across a variety of
downstream tasks. Our primary focus is on the Low-Rank Adaptation (LoRA) (Hu et al., 2021),
thereby reducing the number of parameters that need to be fine-tuned. This approach not only
decreases the computational complexity but also maintains the model’s performance on specific tasks.

Building on LoRA, we further explore the integration of PEFT with multi-task learning paradigms,
which allows a model to be trained on multiple tasks simultaneously, leveraging shared information
across tasks to improve overall performance and efficiency. We incorporate Weight-Decomposed
Low-Rank Adaptation (DoRA) (Liu et al., 2024), which introduces regularization to adjust the rank
of the adaptation matrices dynamically. Additionally, we apply orthogonal adaptation (Po et al., 2023)
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to LoRA. We generate a shared orthogonal basis and sample LoRA weights from the basis to enforce
orthogonality, minimizing interference between tasks while preserving the model’s expressiveness.

Our evaluation encompasses diverse downstream tasks, specifically sentiment analysis, paraphrase
detection, and semantic textual similarity. Through experiments, we demonstrate the effectiveness of
our proposed methods in achieving parameter efficiency and computational savings while maintaining
high levels of task performance.

3 Related Work

Pretraining a large model on general language tasks has proven beneficial for enhancing the accuracy
and performance of various natural language processing tasks (Radford et al., 2018). However,
adapting large-scale pre-trained language models (PLMs), especially those with billions of parameters
is challenging. Full fine-tuning of all parameters in large models is expensive and impractical,
particularly when storing and managing a separate model for each task. Parameter-efficient multitask
fine-tuning methods aim to address this by training a single model for various downstream tasks,
updating only a small subset of parameters. Specifically, PEFT methods(Xu et al., 2023) can maintain
the performance of PLMs while significantly reducing the computational resources required for fine-
tuning. PEFT techniques are being widely adopted in various models, such as diffusion models Zhang
et al. (2023), vision-language models Dai et al. (2024), and language models Zhao et al. (2024).

Instead of updating all model parameters, Hu et al. (2021) proposes LoRA, which freezes the
pre-trained model weights and injects trainable low-rank decomposition matrices into each layer of
the transformer architecture. While LoRA efficiently minimizes the number of trainable parameters
by injecting low-rank matrices into pre-trained models, it often exhibits an accuracy gap. DoRA (Liu
et al., 2024) mitigates this gap by decomposing the pre-trained weight into magnitude and direction.
It employs LoRA specifically for updating the directional component, thus reducing the number of
trainable parameters while maintaining the learning capacity and stability.

In multi-task learning, tasks are often interrelated and can negatively impact each other’s performance
if not managed properly. Orthogonal adaptation merges individually fine-tuned models without
compromising fidelity or incurring additional computational costs, originally applied for modular
customization of text-to-image diffusion models (Po et al., 2023). During fine-tuning, only one
component of the weight residuals is optimized, while the other remains fixed, leveraging a shared
orthogonal basis to ensure approximate orthogonality.

In this project, we investigate how various factors influence LoRA’s performance and provide
valuable insights into its application in multi-task learning. We utilize DoRA to improve upon LoRA’s
efficiency in managing downstream tasks with adding neglible inference latency. Additionally, we
explore the impact of orthogonal adaptation on LoRA and its effectiveness across various downstream
tasks.

4 Methods

In this section, we introduce the full-model fine-tuning and parameter-efficient fine-tuning techniques.
We carefully design the last layer and the training recipe to fully utilize the training data and achieve
better generalization.

4.1 Full-Model Fine-Tuning

The last layer is the same for full-model and parameter-efficient fine-tuning. The parameter-efficient
fine-tuning has a more complex training recipe that includes model ensemble.

4.1.1 Last Layer Design

We first introduce the last prediction layer LW,b for the para and sts tasks. Both tasks take in two
sentences x1 and x2 ∈ RF , and output one scalar y ∈ R. Denote a Bert base model as B that outputs
the [CLS] token representation from the last transformer block. Our first implementation is

LW,b ◦ B(x1, x2) = [B(x1);B(x2)]W + b (1)
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where W ∈ R2F×1 and b ∈ R. Basically, we forward the same Bert model twice, concatenate the
[CLS] token representations, and apply an affine transformation. After that, we generalize LW,b to a
projection function Pθ and an aggregation function A. Therefore, we propose the second and third
implementations:

A ◦ Pθ ◦ B(x1, x2) = A(B(x1)W1 + b1,B(x2)W2 + b2) (2)
where θ = W1,W2 ∈ RF×d and b1, b2 ∈ Rd. However, Equation (1) and (2) do not utilize the
attention mechanism to aggregate the information of two input sentences. Instead, x1 and x2 are
independently encoded. Although the loss propagates the downstream task information, Equation (1)
leaves some representation ability on the table. Therefore, we concatenate the two sentences for B.

A ◦ Pθ ◦ B(x1, x2) = A(B([x1;x2])W1 + b1,B([x1;x2])W2 + b2) (3)
We design A for specific tasks: inner-product for paraphrase prediction and scaled cosine similarity
for similarity prediction, as shown in Equation (4) and (5), respectively. We used Equation (5) to
scale the [−1, 1] cosine similarity to [0, 5] sentence similarity and set α = 1, β = 2.5.

A(v⃗1, v⃗2) = v⃗1 · v⃗2 (4)

A(v⃗1, v⃗2) = (
v⃗1 · v⃗2

∥v⃗1∥ ∥v⃗2∥
+ α) ∗ β (5)

4.1.2 Sequential Training

We use sequential training for full-model fine-tuning, where we train a single model sequentially on
multiple datasets. During this process, the outer loop iterates over the number of epochs, the middle
loop iterates over each downstream dataset, and the inner loop processes all batches of data from
each dataset. We keep the optimizer states across datasets.

4.2 Parameter Efficient Fine-Tuning

While fine-tuning the full model yields good results, it is computationally expensive. Therefore,
we explore PEFT methods, aiming to optimize performance while minimizing resource utilization.
Initially, we implemented popular PEFT methods, including LoRA (Hu et al., 2021) and DoRA (Liu
et al., 2024), ourselves and conducted experiments on minBERT. We also experimented with various
approaches to extend LoRA to multi-task settings.

4.2.1 Vanilla LoRA

The idea behind LoRA is that during fine-tuning, the updates to the weight matrices are essentially
low-rank. Thus, given a pre-trained model and its weight matrix W0 ∈ Rd×k, instead of updating W0

directly, LoRA re-parameterizes the weights by W0 +AB, where A ∈ Rd×r and B ∈ Rr×k. Here,
r is much smaller than d and k, which significantly reduces the number of parameters that need to be
learned during fine-tuning, thus making the process more efficient.

In the original LoRA paper, the authors kept all parameters of the pre-trained model frozen and
applied LoRA only to the query and value matrices in all attention layers. To further enhance
performance, subsequent work has expanded the application of LoRA to include all linear layers
and set the bias vectors in the pre-trained model as trainable. We experimented with these various
settings, which will be discussed in detail in the next section.

4.2.2 Regularized LoRA: DoRA

LoRA may underperform compared to fine-tuning the full model. To address this, DoRA has
been proposed. During inference, DoRA modifies the weight matrix W to be m W0+AB

∥W0+AB∥ , where
m ∈ R1×F is a learnable scaling factor, and W0, A, and B are the same as in LoRA. Intuitively,
this technique attempts to decouple updates to the magnitude and direction of weights, potentially
improving the stability and performance of the model.

4.2.3 Multi-Task LoRA

We also explore methods to extend LoRA to a multi-task setting. We experiment with two approaches.
First, we train a single model sequentially on multiple datasets. Second, we train separate models on
different datasets and then ensemble them together.
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Sequential Training Similar to fine-tuning the full model as described in Section 4.1.2, our first
trial involves training LoRA sequentially on multiple datasets, and we can change the order of datasets
for different training dynamics.

Model Ensemble In addition to training a single model on multiple downstream tasks, we also
trained separate models on different datasets and then ensembled them together. Specifically, we
experimented with the following methods:

1. Ensemble of Experts (EoE): We trained a set of LoRA parameters for each downstream task.
During inference, we used the corresponding set of parameters and classifier head for predictions.
Specifically, for each task i, we used the corresponding LoRA parameters ∆θi to adjust the base
model parameters θ, resulting in the task-specific parameters θi = θ+∆θi, and we use θi to inference
task i. We call this method an ensemble of experts because each set of LoRA parameters acts like an
expert on each task and they are ensembled at inference time.

2. Federated Averaging (FedAvg): As suggested in (McMahan et al., 2017), we trained a set of
LoRA parameters for each downstream task, and then we took a weighted average of each set of
parameters. Given a set of LoRA parameters ∆θi optimized on downstream task i, the resulting
merged model is given by

θmerged = θ +
∑
i

λi∆θi, (6)

where θ represents the pre-trained parameters, and λi is a scalar representing the relative strength of
each task.

3. Orthogonal Adaptation (OrthoAda): The linear combination of weights in FedAvg can lead
to performance loss due to interference between the learned weight residuals. Intuitively, if we can
make the weight residuals orthogonal to each other, we can mitigate this loss. To achieve this, note
that weight residuals for task i in LoRA can be represented in ∆θi = AiB

T
i , if we can make sure

all BT
i Bj = 0, i ̸= j, then we will have ∆θi∆θTj = 0. We can accomplish this by first generating a

large orthogonal matrix and then selecting different columns from it to form Bi and Bj . This method
has been proven effective in fine-tuning large text-to-image models, as suggested in (Po et al., 2023).
Therefore, we experiment with this approach in our multi-task setting to evaluate its effectiveness.

5 Experiments

5.1 Data

We used the datasets specified in the handout to fine-tune our models for three downstream tasks.

• Sentiment Analysis: We utilized the Stanford Sentiment Treebank (SST), which includes
11,855 sentences derived from movie reviews. These sentences are annotated with ratings
that range from negative to positive.

• Paraphrase Detection: For this task, we used the Quora Dataset (Para), consisting of
400,000 question pairs. Each pair is labeled to indicate whether they are paraphrases of one
another.

• Semantic Textual Similarity: We employed the SemEval STS Benchmark (STS) dataset
for this task. It contains 8,628 sentence pairs, each rated on a scale from 0 (unrelated) to 5
(equivalent in meaning).

5.2 Evaluation method

As described in the default project handout, for Sentiment Analysis and Paraphrase Detection, we
evaluated performance using the mean accuracy on class labels. For Semantic Textual Similarity, we
assessed performance by calculating the Pearson correlation between the true similarity values and
the predicted similarity values.

5.3 Experimental details

For both full-model fine-tuning and PEFT, We use lr=1e-5, dropout=0.3, batch=32, epochs=10. In
Table 1, we use sequential training (Section 4.1.2) set d = 64 for Equation (2) and (3). We test
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different r and trainable parameter settings for PEFT on single task. Finally, for all PEFT experiments
in the multi-task setting, we apply sequential training and model ensemble (Section 4.2.3) and adopt
r = 64, apply LoRA to all linear layers, setting the bias as not trainable. Figure 1 illustrates all the
settings we have experimented with.
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Figure 1: A single transformer layer that composes of attention and feed-forward network (FFN).
The yellow blocks are updated during finetuning. (a) Full parameter used for Table 1; (b) LoRA
(query & value & key) where the trapezoids represent low-rank weights; (c) DoRA (query & value &
key) where the small rectangles under the trapezoids represent the norm m; (d) LoRA (all linear); (e)
LoRA (all linear & bias)

5.4 Results

In Table 1, we report the accuracy of full-model fine-tuning on each downstream task as well as the
overall score. This model is the one we submitted to the leaderboard. We discuss our experiments
with different designs of the last layer’s structure and sequential training order in Section 6.1.

Additionally, in Table 2, we report the PEFT results on the single task setting. We experimented with
the following factors to see how they affect model performance:

• Different LoRA dimensions r,
• Regularized LoRA: DoRA,
• Whether to apply LoRA only to the attention layer or to all linear layers.

We report the PEFT results in the multi-task setting in Table 3. Here, we first provide the results
for different orders of sequential training. We also show the results of the three methods of model
ensembling. A detailed analysis is provided in Section 6.2.

Table 1: Leaderboard scores. The results are obtained by full-model fine-tuning.

Task SST Para STS Overall

Dev 0.519 0.897 0.864 0.783
Test 0.501 0.897 0.874 0.778

6 Analysis

6.1 Full-Model Fine-Tuning

We first analyze the design of the last layer. For the three designs we proposed, described in
Equation (1), (2), (3) respectively, we observe the following results. As shown in Figure 2, Method
3 significantly improves the model’s performance on STS and also benefits the other two tasks.
Therefore, we choose Method 3 as the last layer for the later experiments.

We also experiment with the order of the sequential training. No single order consistently dominates
either on a specific dataset or on the overall score. The dataset order also affects the model perfor-
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Table 2: PEFT single task scores. The best results are in bold.

Method LoRA Dim r SST Para STS Overall Parameters updated

LoRA (query & value & key) 2 0.421 0.838 0.664 0.697 0.10%
LoRA (query & value & key) 4 0.425 0.848 0.699 0.707 0.20%
LoRA (query & value & key) 16 0.464 0.862 0.761 0.736 0.80%
LoRA (query & value & key) 64 0.468 0.878 0.804 0.749 3.13%
DoRA (query & value & key) 64 0.480 0.876 0.802 0.752 3.15%

LoRA (all linear) 64 0.490 0.886 0.823 0.762 8.91%
LoRA (all linear & bias) 64 0.490 0.886 0.823 0.762 8.96%
LoRA (all linear & bias) 128 0.493 0.893 0.823 0.766 16.45%

Table 3: PEFT multi-task scores. The best results are in bold.

Order / Method SST Para STS Overall Parameters updated

Sequential Training SST-Para-STS 0.473 0.882 0.826 0.756 8.91%
SST-STS-Para 0.429 0.886 0.829 0.743 8.91%
Para-SST-STS 0.483 0.881 0.830 0.760 8.91%
Para-STS-SST 0.471 0.883 0.834 0.757 8.91%
STS-SST-Para 0.482 0.887 0.840 0.763 8.91%
STS-Para-SST 0.478 0.889 0.826 0.760 8.91%

Model Ensemble EoE 0.490 0.886 0.823 0.762 22.8%
AvgFed 0.324 0.637 0.592 0.586 8.91%

OrthoAda 0.233 0.657 0.678 0.576 8.91%

mance in different ways. For SST, the trends for Method 2 and 3 are similar, while for STS, the trends
for Method 1 and 2 are similar. However, the overall score is robust on the dataset order.
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Figure 2: Results of Method 1, 2, 3 across 6 order of datasets (SST-STS-Para, SST-Para-STS,
Para-SST-STS, Para-STS-SST, STS-SST-Para, STS-Para-SST). The horizontal axis represents these
dataset orders.

6.2 Parameter Efficient Fine-Tuning

We first experimented with LoRA performance in the single-task setting, with the results shown in
Table 2. We initially investigated the impact of different LoRA dimensions r on performance. As
shown in the first four rows of Table 2, performance improves as r increases, indicating that more
trainable parameters lead to better performance. Notably, by comparing the third and first rows
of Table 2, we can see that LoRA achieves 94% of the full-model fine-tuning score while updating
only 0.80% of the parameters, demonstrating the effectiveness of PEFT.

DoRA is better than LoRA on SST. We compared LoRA with DoRA. As shown in the fourth
and fifth rows of Table 2, DoRA significantly improved performance on the SST dataset, although
it did not show substantial improvements on the other two datasets. Since DoRA serves as weight
normalization over the updated parameters, it might perform better than LoRA when the updated
weights’ norm changes abruptly. Therefore, DoRA can help on the SST because new weights added
by LoRA might be so large that leads the model to a worse local optimal point.
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We further compared different LoRA settings, specifically whether to apply LoRA only to the
attention layer or to all linear layers, and whether to fine-tune the bias in the linear layers. These
comparisons are illustrated in the fourth and last three rows of Table 2.

• Applying LoRA to linear layers in FFN can further improve the model. By comparing
the fourth row with the third row from the bottom, we found that applying LoRA to all
linear layers significantly improved performance, though it also increased the number of
parameters being updated. This trend aligns with our first observation that more trainable
parameters can lead to better performance.

• Updating bias at the same time does not improve the model. Comparing the second and
third rows from the bottom, we observed that fine-tuning the bias had minimal impact, likely
because the bias constitutes a very small portion of the total parameters.

• Increasing the inner-dimension can also improve LoRA on FFN similar to the attention.
Finally, comparing the second row from the bottom with the last row, we found that
increasing the LoRA dimension r further improved performance. This improvement was
mainly achieved by increasing accuracy on SST and Para, while STS performance remained
stable, indicating that increasing the number of trainable parameters no longer enhanced
STS performance.

No single order of sequential training consistently dominates in the PEFT multi-task. We then
show the sequential training results using LoRA in the upper half of Table 3. Similar to sequential
training on full-model fine-tuning, no single order consistently dominates either on a specific dataset
or in terms of the overall score. That is because the sequential training order changes the training
dynamics and might serve as beneficial regularization for a task.

EoE performs better than other model ensemble methods. We also present the results of model
ensemble methods in the lower half of Table 3. The EoE method, which combines the LoRA weights
trained separately on each task, achieves relatively high accuracy but involves updating a large
number of parameters. In contrast, AvgFed and OrthoAda use a weighted sum of the LoRA weights
from single tasks as the new weights. While this approach requires fewer parameters to be updated,
the performance is not as strong. AvgFed was designed for federated learning where parameters
of different models are merged multiple times. However, we only merge the weights once in our
experiments because we do not have enough training data, although McMahan et al. (2017) claims
that AvgFed can perform well on imbalanced training data similar to our setting. OrthoAda was
used for isolating weights for different models fine-tuned independently for individual concepts.
It performs worse than EoE because the 3 tasks are not independent, and merging the weights
orthogonally deteriorates the model’s performance on other tasks.

7 Conclusion

We first explore different designs of the last layer and different ways of composing training datasets in
multitask fine-tuning. We find that extra aggregation can benefit the model, and achieve 0.778 overall
score on the Test Leardarboard. Then, we investigate the parameter efficient fine-tuning techniques
(PEFT) on single-task and multi-task. For a single task, we examine two methods, LoRA and DoRA,
from existing literature. For multi-task, we explore another orthogonal direction: different model
ensemble methods. We find that the more parameters are updated, the higher quality the model has.
Our work is limited to a small scale. Therefore, it will be interesting to explore the PEFT design
space of larger models in the future.

8 Ethics Statement

Our project presents several ethical challenges and potential societal risks, including inheriting and
amplifying biases presented in the training data, which leads to discriminatory outcomes. Privacy and
security are also the major concerns, as fine-tuning sensitive data can risk unauthorized access and
misuse. Additionally, the increased accessibility of advanced language models raises the potential
for misuse in generating misinformation or malicious content. Despite the reduced computational
requirements of LoRA, the environmental impact remains significant due to energy consumption. To
mitigate these risks, we propose implementing bias detection, adopting privacy-preserving methods
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such as differential privacy, and establishing ethical use policies. We also advocate for optimizing
model architectures to reduce energy consumption and promote the use of renewable energy resources.
By addressing these ethical challenges, we aim to ensure our work contributes positively to society
while minimizing potential harm.
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