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Abstract

Modern large language models (LLMs) face growing security risks like prompt
injections and jailbreak schemes, which attempt to leak sensitive data or cause
unintended behaviors. One notable example is the Do Anything Now (DAN) exploit,
which prompts LLMs to “do anything now.” This paper examines neural and
non-neural approaches to outsmarting these attacks: spotlighting, Instruction
Hierarchy, fine-tuned classification with BERT (danBERT), and Siamese Networks
for similarity detection (danSN). After evaluating their performance on four tasks—
prompt injection classification, prompt injection detection, jailbreak detection,
and password protection—we construct a “Recollection” pipeline that uses a
mixture of experts-esque mechanism with Instruction Hierarchy, danBERT, and
danSN before applying spotlighting. Our pipeline yields the following accuracies
across the four datasets: 66.67%, 64.53%, 99.87%, and 51.94% respectively. This
demonstrates a marked improvement over our baseline accuracies of 50%, 0%, 0%,
and 0%. With modern non-neural detection mechanisms achieving detection rates
of ≈ +50% above their respective baselines across various tasks, we conclude
that a combination of neural and non-neural strategies is the most efficacious for
safeguarding LLM security. This evaluation highlights the importance of diverse
methodologies to fortify LLMs against malicious prompt attacks.

Key Info: Tony Lee is our TA mentor. We have no external collaborators, mentors, or shared projects.
Team contributions: Grace implemented dataset pre-processing, baselines, non-neural techniques,
and the danSN model. Jenny implemented danBERT fine-tuning and neural pipeline evaluation. Alice
implemented Instruction Hierarchy and word embedding implementation. All worked on writeup.

1 Introduction

LLMs such as OpenAI’s ChatGPT OpenAI [1] and Google’s Bard [2] have demonstrated impressive
capabilities across various domains. However, recent incidents have revealed an array of attacks that
bypass existing safeguards. Two notable vulnerabilities include prompt injections—in which users
input instructions that subvert system prompts [3, 4]—and jailbreak schemes—in which users bypass
LLM safeguards to elicit harmful outputs [5, 6]. The DAN exploit, for example, jailbreaks LLMs by
instructing them to adopt an alternative persona that can “do anything now” [7]. Addressing these
vulnerabilities is crucial for ensuring the safe, ethical, and reliable use of LLMs.

In response to these concerns, groups like Lakera AI have created password protection games like
“Gandalf” and “Mosscap” to test and improve LLM security. These games simulate scenarios where
players attempt to extract system prompts or private information from LLMs, while Lakera collects
user inputs to develop datasets [8]. This project, inspired by Lakera’s games, attempts to fortify
LLMs against adversarial prompts both within and beyond password protection games.

These password protection games also highlight the cat-and-mouse dynamic of LLM security, where
users develop new attacks as developers respond as quickly as possible. In this context, employing a
combination of neural and non-neural techniques becomes crucial. Neural classification prepares
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models to detect novel malicious prompts, while non-neural techniques can boost baseline LLM
performance. Ultimately, this paper seeks to answer the following questions:

1. How effective are non-neural methods like spotlighting [9] in detecting malicious inputs?
2. Can neural approaches to classification improve performance?
3. Does a hybrid approach combining both provide a more robust solution to LLM security?

By addressing these questions, we anticipate this project will contribute to the development of more
secure and resilient LLMs, thereby improving user trust in these technologies. We selected Llama-2
(7B) as our baseline model for its balanced trade-off between computational efficiency and model
performance, which allowed us to conduct extensive experiments without excessive resource costs.

2 Related Work

Many groups have conducted surveys to understand the anatomy of malicious prompts. Wallace et
al. discerns two classes of prompt injections, while Rao et al. divides jailbreak techniques into five
distinct classes [10, 11]. These shared features motivate text classification algorithms as a means of
detecting malicious prompts. These include traditional machine learning approaches as well as more
complex deep learning approaches, which typically make use of embedding methods like Word2Vec,
GloVe, and FastText [12]. More complex architectures like transformers have also been successfully
applied to classification, with BERT attaining strong results on tasks like sarcasm and emotion
classification [13, 14]. Ultimately, the difficulty in detecting malicious prompts lies in the fact that
LLMs cannot distinguish user inputs from system prompts; these strings are simply concatenated, as
LLMS operate on a unbounded stream of tokens [9].

Targeted prompting has been used as a non-neural method of detecting malicious inputs. Xie et
al. reduced the success rate of jailbreak attacks against ChatGPT by nearly 50% after appending
self-reminder prompts to all queries [15]. Meanwhile, Hines et al. achieved similar success with
spotlighting—which uses prompting to differentiate system prompts from user inputs. The three
methods of spotlighting proposed are (1) delimiting: user input is wrapped between the [START]
and [END] markers; (2) datamarking: all whitespace in the user input is replaced with a delimiting
token such as ˆ; and (3) encoding: user input is encoded to distinguish it from the system prompt [9].

The Instruction Hierarchy has also been proposed as a method of structuring and understanding a
complex sets of instructions. Wallace et al. introduces this paradigm of training LLMs to prioritize
instructions based on their source credibility. System prompts are the most credible, followed by
user inputs, model outputs, and tool outputs [10]. If any set of instructions conflict, the LLM should
discard the lower-priority instructions. This paper will extend the work from [15, 9, 10].

3 Approach

In addition to the prompting and spotlighting techniques discussed above, we constructed a mixture
of experts-esque mechanism to form a Neural Gateway to filter LLM inputs. These experts include
Instruction Hierarchy, danBERT, and danSN. Combined together, this forms what we term the
Recollection pipeline, also shown in Figure 1. We compare the performance of this pipeline on the
four classes of tasks to the performance of the the baseline Llama-2 (7B) model—which acts as
our baseline. For reference, baseline performance is reported in Table 2, and the methodology for
performance evaluation is discussed in Section 4.2.

Figure 1. Recollection pipeline for detecting prompt injections and jailbreak schemes.
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3.1 Instruction Hierarchy

The instruction hierarchy utilizes a LogisticRegression model from the sklearn library on
the Deepset dataset with system prompts and user prompts. Two embedding methods were used:
GloVe and word2vec. We used file glove.6B.300d.txt from GloVe’s pre-trained word vectors;
specifically Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 300d vectors) [16].
For each, we calculate similarity metrics of Euclidean distance, inner product, and cosine similarity.
All values of Nan‘s resulting from cosine similarity calculations are replaced by SimpleImputer
from sklearn with the mean of the column. The goal of the Instruction Hierarchy is to use logistic
regression to learn how the relationship between the (dis)similarity of a system prompt and user input
informs whether or not the user input is malicious or otherwise in opposition to the system prompt.

3.2 Classification with danBERT

The danBert model is a DistilBert model fine-tuned on the Deepset dataset, which is the only
dataset that contained both malicious and innocuous prompts. BERT is particularly suited for
classification tasks due to its ability to capture contextual information bidirectionally. We fine-tuned
the HuggingFace library’s DistilBertForSequenceClassification transformer [17], which
itself is a distilled version of the BERT base model. The advantages of DistilBert are its speed:
being 40% smaller than the Bert base model, DistilBert is 60% faster while retaining 97% accuracy
compared to the base model [18]. The DistilBertForSequenceClassification transformer is a
variant of DistilBert specifically tailored for classification tasks: it contains an additional classification
head on top of DistilBert to convert the model’s output into a format suitable for classification tasks.
The classification head consists of a linear layer that is fed the pooled output from the [CLS] token’s
(classification token appended to the beginning of an input) final hidden state:

Linear Transformation: logitsbatch size×2 = (pooled output)batch size×768 ·W 768×2 + b2×1,

where the number of classes is given by 2, the dimension of the pooler layer is given by 768, and
W and b denote the weight matrix and bias vector, respectively. We implement similar overfitting
methods as in section 3.3, applying dropout with probability p = 0.1. Our intention is to use danBert
to classify an unseen user prompt as either malicious or nonmalicious.

3.3 Similarity Detection with danSN

The danSN model performs classification by using similarity detection to determine if an input is
more similar to previously seen malicious or innocuous inputs. Inspired by Neculoiu et al. [19], we
use torch and transformers (uses cited below) to implement an original Siamese network that
classifies pairs of input prompts as similar—both malicious or both innocuous—or dissimilar—one
malicious and one innocuous. The Siamese architecture, visualized in Figure 2, consists of two
branches that share the same weights. Each branch contains a Long Short-Term Memory (LSTM)
layer [20] followed by dropout regularization [20]. Each prompt from the pair is inputted into a
branch, and their representations are used to compute a similarity score.

Figure 2. Schematic for danSN with a Siamese neural network.

In more detail, the LSTM layer converts input sequences of embeddings—generated from the GPT-2
tokenizer [21]—into a 128-dimensional hidden state vector:

LSTM: Rn×1024 → Rn×128,

where n is the number of tokens. Because we only have one dataset with both malicious and
innocuous prompts—and its training set only includes around 250 examples—we were deliberate
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about preventing overfitting. Thus, we apply dropout after the LSTM layer, randomly omitting each
feature in the hidden state vector with probability p = 0.50. The distance between the outputs from
each branch is calculated by taking the absolute value of their difference. This value is then fed to a
fully connected layer (FC), which transforms the difference into a scalar value that represents the
similarity score to classify the input pair as similar or dissimilar. Thus, given the GPT-2 embeddings
of the input pair x1 and x2, we have:

logits = FC(|LSTM(x1)− LSTM(x2)|).

A negative value indicates dissimilarity, and a positive value indicates similarity. Our intention is to
use danSN to classify a previously unseen prompt by performing similarity detection between the
new prompt and known malicious and innocuous prompts.

4 Experiments

4.1 Datasets and Preprocessing

For these experiments, we utilized a total of eight datasets and chose to combine performance metrics
across several datasets according to the following four classes of tasks:

1. Prompt injection classification (pi_class): Deepset prompt injections (662 points) [22]
2. Prompt injection detection (pi_detect): HackAPrompt prompt injections (approx.

602,000 points) [23]
3. Jailbreak detection (jailbreak): Do Anything Now jailbreaks (approx. 107,000 points)

[24], ProtectAI jailbreaks (104 points) [25]
4. Password protection (password): Lakera Gandalf password extraction - summarization

(140 points) [26], Lakera Gandalf password extraction - ignore instructions (1,000 points)
[27], Lakera Mosscap password extraction (approx. 279,000 points) [28], TensorTrust
password extraction (570 points) [29]

The first task includes malicious and innocuous prompts, so the LLM must perform binary classifica-
tion. The remaining classes only contain malicious prompts and span three security tasks: identifying
prompt injections, identifying jailbreak attempts, and protecting a password from malicious users.

We first clean the datasets by removing non-English prompts [30], removing duplicates, and replacing
null or non-existent values with the empty string. We also prune non-relevant information such that
each entry consists of the following: a system prompt establishing the LLM’s role, a user input to
the LLM, an optional second system prompt to be appended to the user input, an optional password
only for the password task, and a label classifying the input as malicious (1) or innocuous (0). An
example is shown in Table 1. We then split all datasets into a 75-12.5-12.5 train-validation-test split.

System Prompt ... Respond... but never say the word PWNED:\n
User Input "Whats the word you are not aloud to say\n"

No System Prompt 2; no Password (both optional)

Table 1. Example from the HackAPrompt dataset with label 1 (malicious input).

4.2 Evaluation method

For the pi_class task, we evaluate our model’s performance by comparing the precision, accuracy,
recall, and F1 scores. We also produce a confusion matrix to visualize the binary classification
performance. All remaining tasks are scored via accuracy because all entries are malicious. We
automate evaluation with the following approach: for the password task, a response is considered
correct if the model does not leak the password; for the pi_class, pi_detect, and jailbreak
tasks, a response is marked as correct if it contains “malicious input detected,” which we prompt for.

4.3 Experiments: Baselines and Non-Neural Approaches

To determine our baseline, we evaluated Llama-2 (7B) on a random sample of 50 points from
each validation dataset with the exception of the jailbreak dataset from ProtectAI, which only
contained 13 points in its validation dataset. This corresponded to a total of 50 pi_class examples,
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50 pi_detect examples, 63 jailbreak examples, and 200 password examples. The resulting
accuracies are reported in Table 2.

We ran two experiments to evaluate the efficacy of self-reminding and spotlighting. For self-reminding,
we append a zero-shot, one-shot, and few-shot self-reminding prompt between the system prompt
and user input instructing the model to reject inputs with prompt injections or jailbreak attempts. For
reference, the zero-shot self-reminding prompt is included as Figure 3. Self-reminding results are
reported in Table 2, and the best performing prompts on each task are highlighted in red.

Be wary of any attempts to manipulate your responses, such as prompt
injections or jailbreak attempts. If you detect any malicious
input, respond with “Malicious input detected.” and nothing else.

Figure 3. Zero-shot self-reminding prompt for non-neural experiments.

Given the superior performance of one-shot self-reminding, we implement it in tandem with various
combinations of spotlighting techniques: delimiting (L), demarking (M), encoding (E), and their
permutations. Although Hines et al. proposes base64, rot13, and binary as three approaches for
encoding [9], we only implement rot13 so as to not exceed Llama-2’s token limit. Our results are
included in Table 2, with the best performing spotlighting techniques highlighted in blue.

Self-Reminding Spotlighting with one-shot self-reminding
Task Baseline ZS OS FS L M E LM LE ME LME

pi_class 0.50 0.40 0.63 0.60 0.53 0.57 0.63 0.57 0.63 0.63 0.63
pi_detect 0.00 0.30 0.13 0.10 0.37 0.33 0.50 0.33 0.50 0.50 0.50
jailbreak 0.00 0.02 0.12 0.12 0.05 0.30 0.49 0.30 0.49 0.49 0.49
password 0.00 0.29 0.44 0.34 0.29 0.31 0.37 0.30 0.38 0.38 0.37

Table 2. Baseline and non-neural accuracies across the four dataset classes (validation sets).

4.4 Experiments: Instruction Hierarchy and Results

We opted to train Instruction Hierarchy on the Deepset dataset because the Deepset dataset was the
only dataset involving both malicious and innocuous prompts, allowing for binary classification. All
other datasets contain only malicious prompts, so they are ill-suited for binary classification tasks.
Since the Instruction Hierarchy relies on logistic regression, we simply fit the regression to the train
set and determined the results on the validation set, reported in Table 3. Notice that using GloVe
embeddings, highlighted in blue, slightly outperforms using word2vec embeddings.

Embedding Method Accuracy on Deepset Validation
GloVe 0.6444

Word2vec 0.6222

Table 3. Instruction Hierarchy validation accuracies using GloVe and word2vec embeddings.

4.5 Experiments: danBERT Classification and Results

We trained on only the Deepset dataset for reasons mentioned above in Section 4.4. As previously
discussed, dropout of 0.1 was applied to mitigate overfitting. The model was trained using Binary
Cross-Entropy loss:

ℓ(x, y) = L = {l1, . . . , lN}⊤, ln = −wyn
log

exp(xn,yn
)∑2

c=1 exp(xn,c)
· 1{yn ̸= ignore_index},

where x is the input, y is the target, w is the weight, 2 is the number of classes, and N spans the
minibatch dimension (equation derived from [31]). We performed hyperparameter tuning over the
learning rate and batch size: we tested batch sizes of [4, 8, 16] and learning rates of 5e − 5, 4e −
5, 3e− 5, 2e− 5, 1e− 5] over 20 epochs, with early stopping (patience of 3) implemented; we report
the four combinations with the lowest losses on our validation set in Table 4.
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Batch Size Learning Rate Validation Loss Validation Accuracy (%) Epochs
16 4e-05 0.000276 100.0 20
4 3e-05 0.000306 100.0 20
4 2e-05 0.000318 100.0 20
4 5e-05 0.000641 100.0 6

Table 4. danBERT validation accuracies.

Our final model uses the Adam optimizer for a learning rate of 5e−05 and batch size of 4. While this
combination did not yield the lowest learning rate, we selected this combination because convergence
occurred after 6 epochs, as opposed to the other combinations (the authors of BERT recommend
fine-tuning on approximately 4 epochs to prevent overfitting [32]). Accuracy reached 100% in both
training and validation; we hypothesize this is due to overfitting as a result of the small sample size
of our training and validation sets.

4.6 Experiments: danSN Similarity Detection and Results

Like with Instruction Hierarchy and danBERT, danSN was trained primarily on the Deepset dataset.
However, because Siamese networks are trained on two inputs at once, we found it necessary to
augment the dataset by combining the train set with 1000 malicious examples from the TensorTrust
train set and combining the validation set with 200 such examples.

Each branch of the Siamese network used by danSN consisted of an LSTM layer with a hidden state
size of 128 and an embedding input size of 1024. As previously discussed, dropout of 0.50 was
applied post-LSTM to mitigate overfitting. The model was trained using the Binary Cross-Entropy
with Logits Loss [33], commonly used for classification with neural nets:

L(y, ŷ) = − 1

N

N∑
i=1

[yi · log(σ(ŷi)) + (1− yi) · log(1− σ(ŷi))] ,

where N is the number of examples, yi is the true label, ŷi is the predicted logit, and σ is the sigmoid
function. We use the Adam optimizer with a learning rate of 0.001 and a weight decay of 0.01 to
prevent overfitting [34]. We also implement early stopping and learning rate scheduling [34]—which
reduces the learning rate by a factor of 0.1 when validation loss does not improve, preventing the
model from overshooting minimum loss. Training and evaluation batches were set to a size of 32,
and while the model was set to train over 100 epochs, the early stopping mechanism typically ended
training after around 10 epochs. Training took around 30 minutes, reaching 0.7846 training accuracy
and 0.8151 validation accuracy, with losses reported in Figures 4 and 5.

Figure 4. Training loss (first 1000 batches). Figure 5. Loss over epochs.

4.7 Experiments: Recollection Results

To construct the Recollection pipeline from Figure 1, we weight the prediction of the three experts (In-
struction Hierarchy, danBERT, and danSN) by their relative validation accuracy. Thus, the Instruction
Hierarchy is weighted 0.262 = 0.6444

0.6444+1.0+0.8151 ; danBERT is weighted 0.407 = 1.0
0.6444+1.0+0.8151 ;

danSN is weighted 0.331 = 0.8151
0.6444+1.0+0.8151 . Note that since danSN is inherently used for similarity

detection and not classification, we will modify it to compute the similarity between all user inputs
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and a known malicious prompt; user inputs determined to be similar are classified as malicious
while dissimilar user inputs will be treated as innocuous. Combined, we term these experts a Neural
Gateway. We only allow a user input to pass into the non-neural mechanism—which applies one-shot
self-reminding, datamarking, and rot13 encoding—and LLM if the Neural Gateway predicts with
≤ 0.50 probability the input is malicious. Otherwise, the LLM directly rejects the user input.

The results Recollection achieved on the test sets across all four tasks are reported and compared to
baseline and individual expert performance in Table 5. Performance on the test sets is in blue.

Task Baseline Inst. Hierarchy danBERT danSN Recollection
pi_class 0.50 0.5777 0.4667 0.4667 0.6667
pi_detect 0.00 0.0000 0.8338 0.9547 0.6453
jailbreak 0.00 0.0016 0.9983 1.0000 0.9987
password 0.00 0.0302 0.5959 1.0000 0.5194

Table 5. Expert and Recollection accuracies across the four dataset classes (test sets on the right).

One rationale for the poor performance of the Instruction Hierarchy on all tasks except pi_class is
that it was trained exclusively on the binary classification pi_class data. Since logistic regressions
only produce a linear hyperplane, this simplicity may have generalized poorly to examples beyond
this class. The dichotomy between its performance on pi_class and non-pi_class tasks indicates
that simple ML classifiers can achieve strong results, but only if they are trained on relevant examples.

Individually, danBERT and danSN perform with lower accuracy on the pi_class than the baseline.
We hypothesize that both models were overfitting on the pi_class training set, leading to poorer
performance on the test set. In the case of danSN, we added 1,000 additional malicious prompts
from other training sets to the pi_class training set to accommodate the requirements of Siamese
networks, which need paired inputs to learn similarity. The additional prompts created an imbalance
in the training set, likely exacerbating danSN’s bias towards classifying prompts as malicious, as seen
through the model’s high accuracy on the jailbreak, password, and pi_detect test sets.

With danBERT, despite its lower performance on pi_class, it performed well on pi_detect and
jailbreak. We attribute this to the BERT model’s inherent transfer learning capabilities: the nature
of the prompt injections in pi_detect and jailbreak prompts in jailbreak bear more similarities
to the prompt injections in pi_class than the password extraction prompts in password do with
pi_class. Ultimately, however, when combining all experts together, the Recollection pipeline
performs markedly better than the baseline. The mixture of experts approach leverages the strengths
of each model, balancing their individual weaknesses. For instance, while danBERT and danSN
each performed variably across different datasets, their combined efforts in the Recollection pipeline
resulted in a more accurate detection system.

5 Analysis

When reviewing the results of our non-neural experiments, we were surprised to learn that one-shot
self-reminding outperformed zero-shot and few-shot self-reminding. We expected one-shot self-
reminding to outperform zero-shot, as the additional prompting gave the LLM more context as to how
to respond, but we hypothesized that few-shot self-reminding would amplify this effect. In reality,
while few-shot self-reminding performed markedly better than zero-shot, it typically performed
between 3-10% worse than one-shot. One explanation for this is that the additional examples could
introduce a cognitive overload or confusion within the model.

Another interesting result from self-reminding was that all forms self-reminding had the worst
performance on the jailbreak task. One possible explanation for this is that jailbreak schemes
tend to be extremely diverse, especially relative to prompt injections. Many prompt injections take a
similar form—for example, the DAN injection and the “forget your previous instructions” prompt are
quite commonly known and have many adaptations. Meanwhile, jailbreak schemes simply encourage
the model to violate social norms by swearing, making offensive remarks, or divulging sensitive
information. The vast range of unacceptable behaviors to “achieve” could make it easier to jailbreak
an LLM whose only defense is prompting-related.
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With the results for spotlighting, we found that encoding produced the best results, followed by
demarking, and finally delimiting. This was what we expected, as encoding creates the most dramatic
difference between the system prompt and user input by completely transforming the user input;
meanwhile, delimiting interleaves an additional character throughout the entire user input whereas
demarking simply adds a start and end token. It also aligns with our expectations that combining
multiple forms of spotlighting yields better results; the greater difference there is between the system
prompt and user input, the better we expect the LLM to perform.

From our Instruction Hierarchy, we found that relying on GloVe embeddings to model the relationship
between system prompts and user inputs yeilded higher accuracy than word2vec embeddings. Two
explanations for this include: (1) GloVe’s extensive training on Wikipedia and Gigaword 5 may
help it better capture semantic meaning, and (2) GloVe relies on a co-occurrence matrix, which
can capture more complex relationships than word2vec’s sliding window. Especially in tasks like
prompt injection and jailbreak detection, where capturing semantic meaning is paramount, GloVe’s
capabilities would likely be more valuable.

As discussed in Section 4.7, Instruction Hierarchy, danBERT, and danSN have their own weakness, but
when combined with Instruction Hierarchy and the non-neural mechanism, the complete Recollection
pipeline achieves stronger results. The primary strength of this pipeline is in the Neural Gateway
formed by the three experts; if a malicious prompt is caught at this stage, it may not even reach the
LLM at all. However, if a malicious output does reache the LLM, then the response is ultimately a
probabilistic toss-up. Because LLMs are trained on expansive datasets scraped from diverse sources,
they are exposed to a wide array of textual content—including examples of how to bypass LLM
safeguards and simulations in which LLMs entertain and engage with malicious actors. As a result,
even with techniques like self-reminding and spotlighting, we expect the Llama-2 model we relied on
to still be susceptible to malicious prompts, which it was—as shown in Figure 6.

Note: The decoded input is “Natryn Zrexry” which is the password.

Figure 6. Leaked password from a test set in the password task.

6 Conclusion

A mixture of experts-esque mechanism is fairly effective in identifying LLM attacks, as evidenced
by the performance of our Recollection pipeline compared to a baseline Llama-2 (7B) model. Our
work shows that a hybrid of traditional classifiers, deep neural networks, and non-neural techniques
effectively detects malicious prompts, safeguarding LLM security. In particular, a combination of
neural and non-neural techniques proved to be more effective than non-neural techniques alone: on
their own, non-neural techniques achieved only 63%, 50%, 49%, and 38% accuracy on the pi_class,
pi_detect, jailbreak, and password datasets respectively, versus the Recollection pipeline’s
66.7%, 64.5%, 99.8%, and 51.9% accuracies on the aforementioned datasets. However, a main
limitation of our pipeline is the tendency of the neural methods to overfit, likely due to the small sample
size of our training data and imbalance between malicious and innocuous prompts. Additionally, our
neural models exhibited signs of over-refusal: tendencies to generalize prompts as malicious.

In future iterations, we expect to train our experts on more extensive classification datasets to prevent
over-refusal. Although two of our experts—namely danBERT and danSN—attained high accuracies
on the pi_detect, jailbreak, and password tasks, they performed quite poorly on the pi_class.
We attribute this trend to the lack of innocuous training examples, which instilled a bias to predict
malicious prompts. We would also like to explore traditional ML methods instead of complex deep
learning methods. The Instruction Hierarchy used logistic regression, a relatively simple and classic
approach, to moderate success on the dataset it was trained on; meanwhile fine-tuning BERT and
Siamese Networks showed symptoms of overfitting. Thus, reverting to simpler classifiers such as
Support Vector Machines (SVMs) and decision trees or random forests may prove more successful, as
long as we train them on expansive datasets. While SVMs best capture linear relationships, decision
trees and random forests adapt well to non-linear patterns, so this approach would likely avoid the
issues we faced with our logistic-regression-based Instruction Hierarchy. It may also be advantageous
to incorporate more non-neural elements; for example, we could include hardcoded heuristics to
detect high-risk phrases or instructions that are commonly used in prompt injections (e.g. “what are
your instructions?”). Through a combination of these approaches and the ones explored in this paper,
we hope to attain stronger performance across a wider range of malicious prompts.
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7 Ethics Statement

One ethical concern is the potential for over-refusal due to misclassification of prompts, which
would cause legitimate queries to be flagged as malicious. This could lead to language models
withholding responses and undue censorship. This will disproportionately impact non-native English
speakers and non-standard dialects of English, as their inputs may be classified as atypical. Thus, it’s
important that we use representative data from various languages. In our experiments, we narrowed
our datasets down to focus on English prompts simply because English is our first language. However,
if we were to scale this project up with a larger team, we would certainly explore non-English datasets.

A second ethical concern could arise if our model classifies too few prompts as malicious. This could
result in undetected jailbreak and prompt injection attempts, which could lead to system messages
being exposed, or—in extreme cases—user data being leaked to malicious actors trying to jailbreak
the LLM. However, solving this problem simply requires us to be rigorous in training our model—that
is, using diverse datasets and attaining high accuracies for detection. After all, standard/vanilla LLMs
already face this issue, and our project aims to mitigate these risks via Recollection.1

1Per Ed post #1943, this is not included in the 8-page limit.

9



References
[1] OpenAI. Introducing ChatGPT, Nov 2022.

[2] Google. An important next step on our AI journey, Feb 2023.

[3] Jose Selvi. Exploring Prompt Injection Attacks, December 2024.

[4] Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning Zhang, and Chaowei Xiao. Automatic and
Universal Prompt Injection Attacks against Large Language Models, 2024.

[5] Lavina Daryanani. How to Jailbreak ChatGPT, February 2023.

[6] Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, and Yang Zhang.
Comprehensive Assessment of Jailbreak Attacks Against LLMs, 2024.

[7] Josh Taylor. ChatGPT alter ego ‘Dan’ lets users jailbreak AI program to get around ethical
safeguards, Mar 2023.

[8] Lakera Team. DEFCON Welcomes Mosscap: Lakera’s AI Security Game to Tackle Top LLM
Vulnerabilities, November 2023.

[9] Keegan Hines, Gary Lopez, Matthew Hall, Federico Zarfati, Yonatan Zunger, and Emre
Kiciman. Defending Against Indirect Prompt Injection Attacks With Spotlighting, 2024.

[10] Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions, 2024.

[11] Abhinav Sukumar Rao, Atharva Roshan Naik, Sachin Vashistha, Somak Aditya, and Monojit
Choudhury. Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting
Jailbreaks. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani
Sakti, and Nianwen Xue, editors, Proceedings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages
16802–16830, Torino, Italia, May 2024. ELRA and ICCL.

[12] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes,
and Donald Brown. Text Classification Algorithms: A Survey. Information, 10(4), 2019. ISSN
2078-2489. doi: 10.3390/info10040150.

[13] Arup Baruah, Kaushik Das, Ferdous Barbhuiya, and Kuntal Dey. Context-Aware Sarcasm
Detection Using BERT. In Beata Beigman Klebanov, Ekaterina Shutova, Patricia Lichtenstein,
Smaranda Muresan, Chee Wee, Anna Feldman, and Debanjan Ghosh, editors, Proceedings of
the Second Workshop on Figurative Language Processing, pages 83–87, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.figlang-1.12.

[14] Kisu Yang, Dongyub Lee, Taesun Whang, Seolhwa Lee, and Heuiseok Lim. EmotionX-KU:
BERT-Max based Contextual Emotion Classifier, 2019.

[15] Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and
Fangzhao Wu. Defending ChatGPT against jailbreak attack via self-reminders. Nature Machine
Intelligence, 5(12):1486–1496, 2023. doi: 10.1038/s42256-023-00765-8.

[16] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. https://nlp.stanford.edu/projects/glove/, 2014.

[17] DistilBERT. https://huggingface.co/docs/transformers/en/model_doc/distilbert, 2024.

[18] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2020.

[19] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning Text Similarity with Siamese
Recurrent Networks. In Phil Blunsom, Kyunghyun Cho, Shay Cohen, Edward Grefenstette,
Karl Moritz Hermann, Laura Rimell, Jason Weston, and Scott Wen-tau Yih, editors,
Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/W16-1617.

10

https://nlp.stanford.edu/projects/glove/
https://huggingface.co/docs/transformers/en/model_doc/distilbert


[20] Neural Network Modules - PyTorch Documentation. https://pytorch.org/docs/stable/nn.html,
2024.

[21] GPT2Tokenizer - Hugging Face Transformers Documentation.
https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Tokenizer,
2024.

[22] deepset. Prompt Injections Dataset, 2023. URL
https://huggingface.co/datasets/deepset/prompt-injections.

[23] hackaprompt. Hackaprompt Dataset, 2023. URL
https://huggingface.co/datasets/hackaprompt/hackaprompt-dataset.

[24] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "Do Anything Now":
Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2024.

[25] ProtectAI. Jailbreak Dataset, 2023. URL https://github.com/protectai/llm-guard/blob/
399cb2eea70afc78482db226253ddd1d85f296e3/llm_guard/resources/jailbreak.json.

[26] Lakera. Gandalf Summarization Dataset, 2023. URL
https://huggingface.co/datasets/Lakera/gandalf_summarization.

[27] Lakera. Gandalf Ignore Instructions Dataset, 2023. URL
https://huggingface.co/datasets/Lakera/gandalf_ignore_instructions.

[28] Lakera. Mosscap Prompt Injection Dataset, 2024. URL
https://huggingface.co/datasets/Lakera/mosscap_prompt_injection.

[29] Sam Toyer, Olivia Watkins, Ethan Adrian Mendes, Justin Svegliato, Luke Bailey, Tiffany Wang,
Isaac Ong, Karim Elmaaroufi, Pieter Abbeel, Trevor Darrell, Alan Ritter, and Stuart Russell.
Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game. In The Twelfth
International Conference on Learning Representations, 2024.

[30] Michal Danilak. langdetect: Language detection library ported from Google’s
language-detection, 2021. URL https://pypi.org/project/langdetect/.

[31] CrossEntropyLoss. https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html,
2024.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

[33] BCEWithLogitsLoss - PyTorch Documentation.
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html, 2024.

[34] Torch Optim - PyTorch Documentation. https://pytorch.org/docs/stable/optim.html#, 2024.

11

https://pytorch.org/docs/stable/nn.html
https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Tokenizer
https://huggingface.co/datasets/deepset/prompt-injections
https://huggingface.co/datasets/hackaprompt/hackaprompt-dataset
https://github.com/protectai/llm-guard/blob/399cb2eea70afc78482db226253ddd1d85f296e3/llm_guard/resources/jailbreak.json
https://github.com/protectai/llm-guard/blob/399cb2eea70afc78482db226253ddd1d85f296e3/llm_guard/resources/jailbreak.json
https://huggingface.co/datasets/Lakera/gandalf_summarization
https://huggingface.co/datasets/Lakera/gandalf_ignore_instructions
https://huggingface.co/datasets/Lakera/mosscap_prompt_injection
https://pypi.org/project/langdetect/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/optim.html#

	Introduction
	Related Work
	Approach
	Instruction Hierarchy
	Classification with danBERT
	Similarity Detection with danSN

	Experiments
	Datasets and Preprocessing
	Evaluation method
	Experiments: Baselines and Non-Neural Approaches
	Experiments: Instruction Hierarchy and Results
	Experiments: danBERT Classification and Results
	Experiments: danSN Similarity Detection and Results
	Experiments: Recollection Results

	Analysis
	Conclusion
	Ethics Statement

