
Sparse Full-Rank MLPs for Increased Efficiency of
Language Modeling

Stanford CS224N Custom Project

Aaryan Singhal
Department of Computer Science

Stanford University
aaryan04@stanford.edu

Quinn McIntyre
Department of Computer Science

Stanford University
qam@stanford.edu

Abstract

Memory bandwidth has increasingly become a limiting factor in efficient inference
and training of Large Language Models Vaidya (2024). To overcome this, con-
siderable work has been done on minimizing the number of parameters per-layer,
or the size of these parameters. These methods include LoRA Hu et al. (2021),
Quantization, Monarch Matrices Dao et al. (2022), and many more approaches.
Even as memory bandwidth increases on consumer hardware. We sweep over
monarch matrix sparsity configurations at the small language modeling scale on
TinyStories Eldan and Li (2023), and confirm a direct exponential relationship
in the decrease in model parameters as Monarch blocking becomes more sparse
with a difference of 5.786 perplexity points from full matrix to diagonal monarch
sparsity. We confirm that the decrease in model quality as blocking increases scales
to GPT2-m sized models Radford et al. (2019). We demonstrate that there is an
immediate cost that comes with speedup in this way, and show that there "is no
free lunch."

1 Key Information to include

• Mentor: Sonia Chu
• External Collaborators: N/A
• Sharing project: N/A

2 Introduction

The NVIDIA RTX 4090 has 1 Tb/s memory speeds NVIDIA Corporation (2022) and 24GB of RAM.
Considered to be frontier hardware, it is capable of running models up to 24GB on a single GPU.
The compute die on the 4090 has over 80 Tflops NVIDIA Corporation (2022), so when running
transformer architectures Vaswani et al. (2023), the bottleneck is entirely in the loading of parameters.
The local cache on the 4090 Vaidya (2024) is not large enough to hold the entire model, so the
parameters must be loaded one layer at a time. Given that there are nm(2k − 1) flops in an n× k,
k ×m matrix multiply, and the MLPs in SOTA consumer models (llama 3 7b) is approximately 2/3
of the parameters AI@Meta (2024).

Training large machine learning models is expensive due to the incredible compute costs from
operations on large matrices. An obvious approach to reduce the training cost is to enforce some
structure on the parameters of the model so as to optimize the computations on the GPUs and have
more efficient training.

A problem with current approaches is that the quality of the final model suffers greatly for any
enforced sparsity on the matrix. The gains from sparsity occur not just in the training, but in the
inference step of the model.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

3.1 LoRA

One method of layer-wise parameter efficiency is to use Low-Rank adapters to lower the parameter
counts of layers Hu et al. (2021). This is commonly done in fine-tuning settings, but a model could
be pretrained with low-rank matrices which would

3.2 Monarch

In Monarch Dao et al. (2022), Dao et al. present Monarch Matrices. Monarch matrices are sparse
matrices that are highly expressive and can represent a wide range of operations. Let n = m2. An
n× n Monarch matrix has the form:

M = PL⊤R,

where L and R are block-diagonal matrices, each with m blocks of size m × m, and
P is the permutation that maps [x1, . . . , xn] to

[
x1, x1+m, . . . , x1+(m−1)m, x2, x2+m, . . . ,

x2+(m−1)m, . . . , xm, x2m, . . . , xn

]
.

These matrices have many convenient properties to suggest them as a promising candidate for sparse
model training systems, namely that monarch matrices and the product of monarch matrices can
express many operations, like the Fast Fourier Transform, Toeplitz matrices, and many other matrix
transformations.

These matrices can be dropped in to a model in place of linear layers and ran out-of-box. When
training a GPT-2 architecture with monarch matrices, they achieve similar perplexity but with 2x the
speed.

Additionally, the paper presents three training methods that can be employed using monarch matrices.
First, end-to-end sparse training of models, which is training a model with monarch matrices. Second,
sparse to dense training, where a model is trained mostly with monarch matrices but then the other
weights are turned on to allow for full expressivity near the end of training, and third, dense to sparse
training, where monarch matrices are distilled from a dense network to allow for fast inference on the
network while maintaining similar quality.

4 Approach

We build on the work of Monarch Matrices Dao et al. (2022) Fu et al. (2023) and explore the effect
of variable blocking in different language modeling regimes. Blocking reduces parameters per layer,
but this leads to a reduction in of the language model’s quality.

4.1 Parameter Calculation Formulas

4.1.1 Standard MLP

The formula for the parameter count of each layer in a standard MLP is:

Parametersstandard = in_features × out_features + out_features

This calculation includes the weights matrix and the bias vector for each layer.

4.1.2 Monarch Linear Model

The calculation for the Monarch Linear model with different block sizes is given by:

Parametersblkdiag1 =

{
nblocks × in_blksz × in_blksz if in_features_extended < out_features_extended
nblocks × out_blksz × in_blksz otherwise

Parametersblkdiag2 =

{
nblocks × out_blksz × in_blksz if in_features_extended < out_features_extended
nblocks × out_blksz × out_blksz otherwise

2

Parametersbias = out_features

Total ParametersMonarch Linear = Parametersblkdiag1 + Parametersblkdiag2 + Parametersbias

These formulas account for the number of blocks (nblocks), the calculated block sizes
(in_blksz and out_blksz), and whether the extended feature dimensions (in_features_extended and
out_features_extended) affect the shape of the block diagonal matrices.

4.2 Consequential Bandwidth Gains

The effects of this sparsity are immediate, as seen by the speedup in loading each matrix and the full
MLP. Directly increasing the sparsity in this way gives a directly proportional lift in speed of loading
on the 4090. Looking at table 4.2, the direct effects of lower parameters in the MLP are realized
immediately. Because a model like llama-3 7b Vaidya (2024) has to be loaded one layer at a time
due to the size of the cache and the MLP make up approximately 2/3 of the parameters in the model,
with increased sparsity in an architecture like llama, this will lead to a much larger speedup than any
optimization of attention AI@Meta (2024).

Configuration Standard MLP 8 Blocks 16 Blocks 32 Blocks
First Layer (1024 to 4096) 4,198,400 659,456 331,776 167,936

Second Layer (4096 to 1024) 4,195,328 656,384 328,704 164,864
Total Parameters 8,393,728 1,315,840 660,480 332,800

Loading Time (s) 1.68× 10−5 2.63× 10−6 1.32× 10−6 6.66× 10−7

Table 1: Loading times for various blocking configurations of a neural network model in bf16 format
being loaded from RAM into the cache on an NVIDIA RTX 4090.

5 Experiments

We ran experiments in the small and large language modeling regime and demonstrated that the
trade-off in performance via sparsity and perplexity scales from the small to large language modeling
scale.

5.1 Data

To explore the effects of various degrees of blocking, we started with a small language modeling task
with a smaller token space than general web text to use a lightweight model to see if there are any
effects.

We scaled up to larger language modeling and trained on a larger slice of human language data to
verify that our results hold in the large-language modeling regime.

5.1.1 TinyStories

For the small language modeling task, we trained on the TinyStories dataset Eldan and Li (2023)
which consists of simple synthetically generated stories and contains 2,141,709 samples. We used the
Neox tokenizer Andonian et al. (2023) to tokenize the data.

5.1.2 SlimPajama

For the large language modeling task, we trained on the SlimPajama Soboleva et al. (2023) dataset
and use a 6B token slice.

5.2 Evaluation method

We evaluated the performance of our language modeling approaches by the Cross-Entropy loss and
perplexity that the various sparsity methods achieved. This loss objective was applied to the next
token prediction task with an 80/10/10 train/val/test split.

3

5.3 Experimental details

The configuration we used for TinyStories is as follows in 2:

Table 2: Training Configuration for TinyStories GPT Model

Hyperparameter Value

Dataset tinystories
Tokenizer GPT2
Gradient Accumulation Steps 1
Batch Size 32
Block Size 64
Number of Layers 8
Number of Heads 16
Embedding Dimension 64
Feedforward Network Type monarch
Number of Blocks [1, 2, 4, 8, 16, 32, 64]
Learning Rate 3e-4
Learning Rate Schedule Linear Warmup with Cosine Annealing
Minimum Learning Rate 4e-5
Optimizer Adam
Weight Decay 1e-1
Beta1 0.9
Beta2 0.95
Gradient Clipping 1
Trainer Maximum Steps 10,000

The configuration used for SlimPajama is as follows in 3

Table 3: Training Configuration for SlimPajama

Hyperparameter Value

Dataset SlimPajama
Tokenizer GPT2
Gradient Accumulation Steps 16
Batch Size 16
Block Size 2048
Hidden Dimension 1024
Number of Heads 16
Number of Layers 24
Learning Rate 8e-4
Learning Rate Schedule Linear Warmup with Cosine Annealing
Optimizer AdamW
Feedforward Network Type monarch
Number of Blocks [1, 4, 8, 16, 32]
Minimum Learning Rate 8e-5
Weight Decay 1e-1
Beta1 0.9
Beta2 0.95
Gradient Clipping 1
Trainer Maximum Steps 20,000

4

5.4 Results

5.4.1 Small Language Modeling

In figure 1 and figure 2 we demonstrate the quality drop off proportional to the parameters (via
blocking) because perplexity is exponential of loss, we demonstrate a direct correlation between
parameters in a blocked matrix MLP and increase in perplexity.

Figure 1: Perplexity of Monarch Matrices Trained on TinyStories

Figure 2: Perplexity of Monarch Matrices Trained on TinyStories Linear Fit

5

5.4.2 Large Language Modeling

We observe a similar trend on large language models (although we trained on fewer blocking
configurations due to the expense of training models at this scale, as seen in table 4.

Base 4 Blocks 8 Blocks 16 Blocks 32 Blocks
14.685 16.431 17.276 18.085 18.572
Table 4: Perplexity values across various blocking degrees.

Figure 3: Perplexity of Monarch Matrices Trained on SlimPajama

6 Analysis

We quantitatively demonstrated a drop-off in model quality proportional to increasing sparsity of the
monarch layers in the MLPs. We see similar drop off in the quality of writing. Upon inspection of
the effects of increased sparsity within TinyStories:

Base model example generation:

<|startoftext|>and the family took a big hug. They hugged her and said
they was sad, so they was happy. That was a little girl who loved to play
with her friends. She went to make a big hug and took her special day.

She<|endoftext|>

16 Block Monarch example generation:

<|startoftext|> to the old toy. Dad took out a bow and went!<|endoftext|>
Once there was a boy named Mia. He liked to go and his friends to play.
One day, he had an old man and find one. He would have many things when

Once the blocking has been increased to 64 blocks in the Monarch matrix, the quality of the
generations has notably decreased.

6

<|startoftext|> every afternoon. It was a yellow thing to explore the sky.
One day, the end of the old man said, "What’s go back?"
The man became happy and thanked the man in the table. The little girl was

One notable difference is that while general grammer is correct regardless of the sparsity, increasing
the sparsity of the Monarch MLPs leads to words being used in non-sensical places. The sentence
flows, the meanings of many things do not fit.

This suggests that there is some

7 Conclusion

We find that in the consumer inference regime, where users of large language models are purely
bandwidth bound, training end-to-end sparse model via Monarch Matrices of the same configuration
leads to a loss in perplexity proportional with the log number of parameters lost. This means that the
loss in model quality is directly proportional to speedup in inference of the model, pointing to a "no
free lunch" property of these models.

8 Ethics Statement

With any method that seeks to improve the quality and speed of models deployed on edge compute
will allow for individuals to run larger and higher quality models feasibly on their own machine.
Additionally, with work like chain of thought Wei et al. (2023), it has been shown that model quality
can improve with recursive prompting, so faster inference allows for a higher-performance model in
the hands of individuals.

When deployed through an API, models like GPT-4V and Anthropic those companies can manage
the requests being made to the language models as well as the things that the language models are
allowed to do. This serves as providing an institutional barrier which mitigates the harms.

To mitigate this risk, the best approach is to release high quality models that are aggressively aligned,
with the hope that it is difficult to jailbreak them. Additionally, aggressive monitoring of digital
content to detect AI generated materials could identify when LLMs are being used to generate
nefarious text in public forum which could mitigate harm.

References
AI@Meta. 2024. Llama 3 model card.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Benjamin
Thérien, Phil Wang, and Samuel Weinbach. 2023. GPT-NeoX: Large Scale Autoregressive
Language Modeling in PyTorch.

Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. 2022. Monarch: Expressive structured matrices
for efficient and accurate training.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How small can language models be and still speak
coherent english?

Daniel Y. Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W. Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. 2023. Monarch mixer: A simple
sub-quadratic gemm-based architecture.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

NVIDIA Corporation. 2022. NVIDIA Ada GPU Architecture Whitepaper. Technical report, NVIDIA
Corporation. Accessed: 2024-06-05.

7

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.5281/zenodo.5879544
http://arxiv.org/abs/2204.00595
http://arxiv.org/abs/2204.00595
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2310.12109
http://arxiv.org/abs/2310.12109
http://arxiv.org/abs/2106.09685
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. 2023. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama.

Neal Vaidya. 2024. Mastering llm techniques: Inference optimization. NVIDIA Developer Blog.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all you need.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. 2023. Chain-of-thought prompting elicits reasoning in large language models.

8

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2201.11903

	Key Information to include
	Introduction
	Related Work
	LoRA
	Monarch

	Approach
	Parameter Calculation Formulas
	Standard MLP
	Monarch Linear Model

	Consequential Bandwidth Gains

	Experiments
	Data
	TinyStories
	SlimPajama

	Evaluation method
	Experimental details
	Results
	Small Language Modeling
	Large Language Modeling

	Analysis
	Conclusion
	Ethics Statement

