
Multi-task Learning with minBERT
Stanford CS224N Default Project

Praneet Bhoj
Department of Computer Science

Stanford University
praneet@stanford.edu

Abstract

Though the BERT architecture has had much success in understanding and pro-
ducing natural language sequences, eliciting its generalist capabilities on multi-
ple downstream tasks simultaneously is not as simple as appending task-specific
adapter heads on top of the core BERT model in a disconnected manner. Based on
this observation, our work presented in this paper seeks to apply various training
and architecture approaches to a pre-trained minBERT model in order to develop
a single model that demonstrates improved proficiency on 3 downstream tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity. We find
that using a shared multi-task loss coupled with cosine similarity scoring (for
semantic textual similarity), gradient surgery, and smoothness-inducing adversarial
regularization enables effective updates of shared minBERT embedding parameters
to yield improved performance across all three tasks relative to a baseline model
with task-specific adapters trained in a disconnected manner. However, we also
observe that our improved model shows an over-reliance on a small set of adjective
tokens for sentiment analysis and severe overfitting for semantic textual similarity,
which highlight potential avenues for future exploration.

1 Key Information to include

• Mentor: Olivia Lee
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Since the introduction of the Transformer architecture [1], artificial intelligence for natural language
processing has seen tremendous increases in capabilities across a wide variety of tasks. Indeed,
Transformer-based models like BERT [2] have shown great results in processing natural language
input and generating coherent, human-like natural language output. However, while generalist founda-
tion models such as BERT can perform a large number of tasks to some degree, their performance on
more specialized downstream tasks may not be adequate for practical use. Therefore, to develop more
useful models for a smaller set of domain-specific downstream tasks, it is necessary to fine-tune our
foundation models on domain-specific data while ensuring that it is done with a multi-task learning
approach in order to maintain the model’s generalizability among the downstream tasks of interest.

While multi-task learning can be approached by having task-specific layers appended to the base
foundation model architecture and trained in a disconnected manner, this approach does not update
the parameters of the base model and thus does not leverage any shared embedding structure between
the different tasks. To take advantage of this potential shared information in the embedding space,
multi-task learning can instead propagate parameter updates all the way from the task-specific layers
through the base foundation model. However, this naturally presents issues due to the fact that the

Stanford CS224N Natural Language Processing with Deep Learning

task-specific gradients for the shared parameters may point in very different directions, thus causing
conflicting updates to those shared parameters.

In this paper, we explore the concept of multi-task learning using a simplified version of the BERT
model that will be referred to as minBERT. In particular, we look to use multi-task learning to
improve the performance of a single minBERT model on the following three different downstream
tasks: sentiment analysis of natural language sequences, paraphrase detection between two natural
language sequences, and semantic textual similarity between two natural language sequences. This
work experiments with an approach to the issue of conflicting gradients in multi-task learning called
gradient surgery [3], and we augment it with regularization and cosine similarity techniques to
demonstrate improved proficiency across all 3 downstream tasks using the single minBERT model.

3 Related Work

Given the tremendous advances in language models in recent years, there has been a large amount of
interest and work in multi-task learning. Large language models including BERT have been shown to
indeed have significant multi-task learning capabilities provided sufficient amounts of pretraining
data [4]. More recent work has also supported the idea that multi-task learning during pre-training
can improve model performance on desired downstream tasks [5]. However, these approaches require
a large amount of data to be successful, and the data inefficiency introduced by multi-task pre-training
makes training the large language models even more difficult. So the multi-task pre-training option is
not always viable for all cases in which models need to be developed for domain-specific downstream
tasks. Therefore, as an alternative to multi-task pre-training, previous work has also looked at
fine-tuning on multiple tasks simultaneously with updates to the shared parameters to allow for the
model to learn shared task input representations, but properties such as the aforementioned trouble of
conflicting shared parameter updates during training make the optimization procedure quite difficult
and thus yields poor overall results [6, 7].

To address this problem of conflicting gradients during parameter optimization, previous work has
developed strategies for mitigating gradient conflicts by adjusting the calculated gradients for each
task such that they are better aligned. In particular, the technique called gradient surgery involves
projecting a task’s gradient onto the normal plane of any conflicting gradient from any other task [3].
By aligning task-specific gradients in this way, the shared parameters are able to be updated more
smoothly and thus the network overall can learn more efficiently. Based on this strategy, existing
work has utilized gradient surgery to improve a news recommendation system built on a BERT
architecture [8]. However, that work formulated the problem as a single main task combined with two
lesser-weighted auxiliary tasks whose purpose was only to improve the performance on the main task.
Therefore, the work presented in this paper looks to further analyze the impact of gradient surgery
by applying it in a context of learning three equally-weighted tasks (sentiment analysis, paraphrase
detection, and semantic textual similarity) with a minBERT model. Additionally, we do not use
gradient surgery in isolation as a single enhancement, but rather combine it with a regularization
strategy and cosine similarity calculation to explore their combined effects on multi-task performance.

4 Approach

The core of the approach presented in this paper is focused on the minBERT architecture, which
provides a strong foundation for converting input sequences of natural language into context-aware
vector embeddings. The model achieves this by first padding the input sequence to length 512,
tokenizing the padded input based on a predetermined set of 30000 tokens, and converting the input
sequence tokens into IDs using their indices in the token set. The tokenized input sequence is then
passed through a trainable embedding layer to get a 768-dimensional embedding for each input token,
followed by the addition of a learnable positional embedding value that is calculated for each of the
512 input positions. Finally, the token embeddings are adjusted to their contexts using 12 encoder
Transformer layers.

Each head i of the n-headed multi-head attention mechanism used in the minBERT Transformer
encoder layers iterates over the T input sequence token embeddings hj and produces attention
scores based on the d-dimensional embeddings using the dot-product attention as seen in Equation 1
originally presented in [1].

2

Attentioni(hj) =

T∑
t=1

softmax

(
W q

i hj ·W k
i ht√

d/n

)
W v

i ht (1)

Following the multi-head attention, add-norm, and feed-foward components of the Transformer
encoder layers, the minBERT model outputs the result of the final Transformer layer along with
a pooled representation of the special [CLS] token that is prepended to each input sequence. To
transform the embeddings into the desired outputs for the three downstream tasks (sentiment analysis,
paraphrase detection, and semantic textual similarity), three separate task-specific heads are added
on top of the model, where each head is composed of 3 linear layers with GELU [9] activation in
between the layers. In the case of the paraphrase detection and semantic textual similarity tasks,
since there are two input sentences for these tasks, the embeddings for the input sentences resulting
from the minBERT embedding process are concatenated before being put through the task head. The
baseline architecture for this work is thus defined as the frozen pre-trained minBERT model with
independently fine-tuned task-specific heads (i.e. each head is fine-tuned separately with no updates
to the shared minBERT model weights), and is presented in Figure 1.

Figure 1: Baseline model structure used for our study of multi-task learning. The minBERT model
is built on the Transformer encoder architecture introduced in [1] as seen within the minBERT
component in the figure.

To improve upon the baseline architecture, we implemented and experimented with 3 architecture
enhancements based on previous work. The usage and results of these enhancements will be described
in Section 5, but the details of each enhancement are presented here.

The first enhancement used in this work is inspired by work done in [10], which shows strong
results on semantic textual similarity results by using siamese BERT embedding models with cosine
similarity comparisons between input embeddings. Based on this, rather than using fully-connected
linear layers for the semantic textual similarity task head, we explore the direct use of cosine similarity
on the two input sentence embeddings calculated using Equation 2 and then scaled to match the
desired output range.

cosine similarity(x1,x2) =
x1 · x2

∥x1∥2∥x2∥2
(2)

The next enhancement implemented in this work is gradient surgery, which is presented in [3]. As
described previously, this technique performs gradient projections to align task-specific gradients and
reduce conflicting parameter updates. For each task-specific gradient gi, the task-specific gradients
gj for the other tasks are iterated over in random order. If the cosine similarity between gi and gj is
negative, this indicates conflicting gradients, and gi is then projected onto the normal plane of gj

following Equation 3.
gi = gi −

gi · gj

∥gj∥22
gj (3)

3

The final enhancement implemented in this work is smoothness-inducing adversarial regularization
as presented in [11]. Using this regularization strategy yielded state-of-the-art results on a number
of GLUE benchmark tasks. For a model f(·; θ) and n task data input embeddings xi with labels yi,
the regularized objective is given in Equation 4. The overall loss function is defined in Equation 5
with ℓ(·, ·) being the task-specific loss function used for a given sample. For the regularization part,
a perturbation sampled from N (0, 1× 10−5) is added to the original input embedding to produce
a perturbed embedding x̃i. This is then used to calculate the smoothness-inducing adversarial
regularizer defined in Equation 6 that is scaled by a strength parameter λ and added to the objective.
Within the regularizer, the function ℓs(·, ·) is defined as the symmetrized KL-divergence (Equation 7)
for the sentiment analysis and paraphrase detection classification tasks, and squared error (Equation
8) for the semantic textual similarity regression task. Note that while [11] tries to find the perturbed
input x̃i within the neighborhood of xi that maximizes ℓs, they also suggest that the maximization
can be approximated well enough with just one random perturbation, and thus that is the approach
used in this paper.

F(θ) = L(θ) + λRs(θ) (4)

L(θ) = 1

n

n∑
i=1

ℓ(f(xi; θ), yi) (5)

Rs(θ) =
1

n

n∑
i=1

ℓs(f(x̃i; θ), f(xi; θ)) (6)

ℓs(P,Q) = DKL(P ||Q) +DKL(Q||P) (7)

ℓs(p, q) = (p− q)2 (8)

Across all of these enhancements to the model architecture, the task-specific loss functions used in
this work are as follows: the sentiment analysis task head uses cross entropy loss, the paraphrase
detection task head uses binary cross entropy loss, and the semantic textual similarity task head uses
mean squared error loss. Additionally, during training, the appropriate model parameters are updated
using an AdamW optimizer [12].

5 Experiments

In this section, we describe the experiments performed in our work and present their results.

5.1 Data

All of the experiments conducted in this work utilized the following datasets: 11855 sentences
labeled as “negative”, “somewhat negative”, “neutral”, “somewhat positive”, or “positive” from the
Stanford Sentiment Treebank [13] for the sentiment analysis task, 404298 sentence pairs labeled
as paraphrases (or not) from Quora [14] for the paraphrase detection task, and 8628 sentence pairs
labeled with similarity scores (0 to 5) from SemEval [15] for the semantic textual similarity task.

5.2 Evaluation method

The sentiment analysis and paraphrase detection tasks have data with discrete labels. The experimental
models are thus evaluated on these tasks using simple accuracy measurements (i.e. ratio of evaluation
samples with correctly predicted labels to the total number of evaluation samples). However, the
semantic textual similarity task has data with labels that are continuous values (similarity scores
between 0 and 5), and thus prediction accuracy is not a suitable method of evaluation for this task.
Therefore, the experimental models are instead evaluated on this task using the Pearson correlation
between the predicted and ground truth scores as described in [15]. Finally, an overall score is
calculated from the individual task metrics with score = ((sentiment analysis accuracy) + ((1 +
(semantic textual similarity correlation))/2) + (paraphrase detection accuracy))/3.

4

5.3 Experimental details

Having defined the datasets and evaluation metrics, we now present the details of the various
experiments performed in our study of multitask learning with minBERT. The experiment descriptions
are provided here, and the results of each experiment are provided in Section 5.4.

The initial experiment we ran in our work deals with variations in the fine-tuning sequence for the
downstream tasks. For the baseline predictions, the task-specific heads are each fine-tuned for 10
epochs on top of a frozen minBERT model. However, given the relationships between the tasks, it
seems likely that there may be some shared weights or structure in the embedding process such that
tuning the minBERT model along with the task heads can yield a performance improvement across
the board. Based on this hypothesis, the task heads and minBERT model were fine-tuned by doing
a full pass through each of the task training datasets and making parameter updates based on the
task-specific loss during each epoch. The order in which these tasks were processed during each
epoch was varied for the experiment, giving 6 different model configurations (all possible orderings
of the 3 tasks). As a 7th and final model configuration for this experiment, we looked at an alternate
approach to the independent fine-tuning, which is to perform multi-task learning through summed
losses as seen in [8]. In this configuration, each training batch contained equal amounts of data
for all 3 tasks, and after calculating the appropriate losses for data corresponding to each task, the
losses are added together and full model gradients are taken with respect to this summed loss for
parameter updates. Rather than training for a full 10 epochs on all 7 of these configurations, the
models were trained for 1 epoch each to get a sense of which configuration had the most promising
results. The results, presented in Table 1, show that the summed loss configuration produced the
best early results from our brief fine-tuning procedure, and it is thus selected as the configuration for
further experimentation and iteration in the remainder of our work.

Following our training configuration experiment, we looked at the impact of replacing the fully-
connected linear layers of our semantic textual similarity task head with a direct cosine similarity
score. We believed that this may be a more suitable approach to the semantic textual similarity task
given that we are looking to quantify the similarity between two input embedding vectors as our
underlying objective. This approach follows what was described in Section 4, where the two input
sentences are each embedded using the same minBERT embedding network weights, and then their
embedding vectors are directly passed through a cosine similarity function whose output is scaled to
the required 0 to 5 output range. The summed loss model configurations with the fully-connected
STS task head and the cosine similarity STS task head were each trained for 10 epochs, with the
results in Table 2 showing that the model using cosine similarity performs slightly better and is thus
used for the next round of experimentation.

Building on the initial cosine similarity enhancement, we then experimented with gradient surgery to
improve overall multi-task performance. Given that multi-task learning can often produce conflicting
gradient directions as described previously, we implement gradient surgery in our network to produce
more aligned parameter updates for smoother learning. The implementation of gradient surgery
follows what is presented in Section 4, where gradients are projected onto the normal plane of
conflicting gradients. The model utilizing the gradient surgery implementation was trained for 10
epochs. The results shown in Table 3 highlight a small performance increase from gradient surgery,
so we carry this implementation forward for our next experiment.

Following the implementation of cosine similarity scoring and gradient surgery on our summed loss
multi-task model, we observed signs of overfitting in the form of diverging training and validation
accuracies/correlations for our three tasks. Therefore next experiment we performed explores the
utility of regularization in our multi-task learning process. To mitigate the effects of overfitting,
we implemented smoothness-inducing adversarial regularization as described in Section 4, which
includes an addition to the standard loss using a regularization term based on perturbed input
embeddings. As with the previous experiments, this model with the regularization implementation
was trained for 10 epochs. The results for this experiment are given in Table 4, and show that the
inclusion of regularization provides another small boost in overall performance for our model. It is
therefore kept in our model implementation for our final experiment.

The final experiment we conducted in our study is a hyperparameter sweep to identify the optimal
hyperparameter configuration for our enhanced multi-task model. Inspired in part by the work
in [11], our hyperparameter sweep includes learning rates lr ∈ {1 × 10−3, 1 × 10−4, 1 × 10−5},
regularization strength λ ∈ {1, 3, 5, 7}, and intermediate layer dropout rates d ∈ {0.1, 0.3, 0.5} for

5

a total of 36 hyperparameter configurations. We trained our model (which now includes summed
task loss, cosine similarity, gradient surgery, and smoothness-inducing adversarial regularization)
using these hyperparameter configurations for 2 epochs each. Using the validation results from the
experiment, we found that the best-performing hyperparameter configuration uses lr = 1 × 10−4,
λ = 5, and d = 0.1. This configuration is then trained for a full 10 epochs to produce our final
multi-task model.

5.4 Results

The developmental results for the experiments detailed in Section 5.3 are presented here, along with
the actual test results for our final model configuration for the sentiment analysis (SA), paraphrase
detection (PD), and semantic textual similarity (STS) tasks.

Model Configuration SA Dev Acc PD Dev Acc STS Dev Corr Overall Score
Baseline 0.387 0.678 0.253 0.564

1 (SA, PD, STS) 0.264 0.623 0.338 0.518
2 (SA, STS, PD) 0.190 0.787 0.124 0.513
3 (PD, SA, STS) 0.456 0.765 0.342 0.631
4 (PD, STS, SA) 0.487 0.740 0.231 0.614
5 (STS, SA, PD) 0.222 0.787 0.120 0.523
6 (STS, PD, SA) 0.505 0.778 0.169 0.623

Multi-task Summed Loss 0.480 0.730 0.391 0.635
Table 1: Validation results for the initial model configuration experiment. For the sequential fine-
tuning configurations 1-6, the order in which the tasks are fine-tuned on during each epoch is indicated
in parentheses.

Table 1 presents the results from our initial model configuration experiment. We observe that the
summed loss model shows more promising results than any of the sequentially trained models.
Though this is somewhat surprising, it may be attributed to the fact that a model can theoretically
learn better/more efficiently if it gets signals from all tasks it is optimizing at the same time. It
could also potentially be attributed to the fact that sequential approaches for multi-task learning can
introduce issues of forgetting, where a model trained on data for a particular task forgets how to
perform tasks it was previously trained on.

Model Configuration SA Dev Acc PD Dev Acc STS Dev Corr Overall Score
without cosine similarity 0.482 0.734 0.383 0.636

with cosine similarity 0.491 0.712 0.402 0.638
Table 2: Validation results for the cosine similarity experiment.

Table 2 shows the results from our embedding vector cosine similarity experiment. Though the
overall performance increase from the addition of cosine similarity is small, the metric of note is the
semantic textual similarity correlation. The improved correlation metric on this task is expected given
that the directional similarity between two input sentence embedding vectors should indeed provide a
strong indicator of semantic similarity. Worsening performance on this task using cosine similarity
would have suggested that our learned embeddings are not adequately capturing semantic meaning as
is desired.

Model Configuration SA Dev Acc PD Dev Acc STS Dev Corr Overall Score
without gradient surgery 0.491 0.712 0.402 0.638

with gradient surgery 0.482 0.742 0.416 0.644
Table 3: Validation results for the gradient surgery experiment.

Table 3 contains the results from our gradient surgery experiment. We do see an overall multi-task
performance increase with the introduction of gradient surgery, however the magnitude of this increase
is lower than anticipated. This suggests that, despite the differences in the three tasks of interest,
gradient conflicts between these tasks are not so prevalent to the point that they are causing strongly

6

Model Configuration SA Dev Acc PD Dev Acc STS Dev Corr Overall Score
without regularization 0.482 0.742 0.416 0.644

with regularization 0.489 0.727 0.448 0.647
Table 4: Validation results for the smoothness-inducing adversarial regularization experiment.

opposing parameter updates, and thus the gradient alignment only offers a smaller-than-expected
performance gain.

Table 4 gives the results from our smoothness-inducing adversarial regularization experiment. Though
a performance increase does result from implementing this regularization technique, it is quite notable
that the regularization only slightly mitigates the overfitting issue. The training/validation curves
shown in Figure 2 still show evidence of severe overfitting (especially in sentiment analysis and
semantic textual similarity tasks), highlighting the fact that further work on this topic will need
to focus on additional analysis of the input embedding perturbations used in this regularization
technique, or focus on new regularization techniques altogether.

Table 6 has the results from our final hyperparameter sweep over 36 combinations of learning rate,
regularization strength, and dropout rate. Though hyperparameters are often empirically determined, it
is notable that the optimal regularization strength for this configuration is not the max value in light of
the overfitting issues discussed above. It may be that the presence of dropout in the intermediate layers
reduces the need for smoothness-inducing adversarial regularization to yield increased performance,
but a more definitive answer may arise from even more fine-grained hyperparameter sweeps in future
iterations of this work.

Task Test Metric
Sentiment Analysis 0.481 (accuracy)

Paraphrase Detection 0.741 (accuracy)
Semantic Textual Similarity 0.409 (correlation)

Overall Score 0.642 (score)
Table 5: Test results for the final model. The selected final model uses multi-task summed loss and
includes input embedding cosine similarity for semantic textual similarity, gradient surgery, and
smoothness-inducing adversarial regularization. The hyperparameters selected for training this model
are learning rate 1× 10−4, regularization strength 5, and dropout 0.1, and the model is trained with
this configuration for 10 epochs.

After conducting these experiments and performing the full 10-epoch training procedure on the
selected model configuration, we present the test data results for the final model in Table 5. Though
sentiment analysis is quite a difficult and subjective task, the semantic textual similarity metric is
relatively low compared to what may be anticipated or desired on that task. It seems that despite the
efforts to learn cosine similarity between input embedding vectors, they are still not very representative
of semantic meaning in the sentence. It may require additional fine-tuning for a larger number of
epochs for this property to emerge, though a re-consideration of the initial fully-connected linear
layers versus cosine similarity task head could be explored as well considering these results. However,
there is still an overall performance increase relative to developmental baseline results, which suggests
that the summed loss approach with gradient surgery and regularization may still hold potential
for even greater performance gains through additional efforts such as fine-grained hyperparameter
sweeps.

6 Analysis

The experiments we conducted as part of our exploration of multi-task learning with minBERT loosely
resemble an ablation study over the various proposed model enhancements, showing the multi-task
performance impact of each enhancement incrementally added on to the model. In particular, we
observe a consistent performance increase when each of cosine similarity, gradient surgery, and
smoothness-inducing adversarial regularization are introduced into the model, however the relatively
small boost from gradient surgery is an indicator that our model is producing only a small number of
conflicting gradients when training on our three tasks.

7

The performance of our final model can also be qualitatively assessed by looking at patterns in inputs
that produce failing outputs, particularly focusing on the sentiment analysis and semantic textual
similarity tasks that showed the worst results. For sentiment analysis, the model performs well
in assessing input sentences with commonly positive/negative adjectives. For example, the input
sentence [a fast, funny, highly enjoyable movie] is accurately deemed to have a positive
sentiment, and we observe high accuracy on similarly structured inputs. However, this reliance on
adjectives well-associated with particular sentiments also appears to lead to many of the observed
incorrect predictions. For example, the input sentence [uses sharp humor and insight into
human nature to examine class conflict, adolescent yearning, the roots of
friendship and sexual identity] is predicted as only neutral, when the true classification is
positive. On inputs like these, the model fails to capture the sentiment of nuanced film reviews in the
absence of common positive or negative descriptors like funny, entertaining, engaging, slow, boring,
tedious, etc. that are often present in the correctly-classified inputs. Despite the model’s shortcomings
here, it can also be noted that some of the inputs are difficult to classify due to the inherent subjectivity
of sentiment analysis. For example, [a rigorously structured and exquisitely filmed
drama about a father and son connection that is a brief shooting star of
love] is reasonably predicted as a fully positive sentence (as the movie is said to be “exquisitely
filmed”), but the true label is only somewhat positive. Arguments for either classification can be made
here, but this is also indicative of a potential need for normalization across reviewer scores to mitigate
some of the subjectivity. Furthermore, it appears that the model’s focus on sentiment adjectives also
impacts its performance on semantic textual similarity. For example, the input sentences [someone
is stirring noodles in water] and [a woman is boiling noodles in water] are determined
have a similarity score of 4.7 from the model, while the true score is only 3.2. It seems that the model
has not developed a strong assessment of synonyms, and thus is overly reliant on pure token matches
when scoring sentence similarity like in the previous example. This is further exemplified by the
example input sentences [two black dogs are playing on the grass] and [two black
dogs are playing in a grassy plain], which are accurately given a similarity score of 4.7
(with the true score being 4.6) due to the abundance of matching tokens between the two. The model
may require extended training duration to develop better synonym detection to improve its textual
similarity performance beyond token matching, though it is important to note that the high training
scores for semantic textual similarity show that the model has the expressive capability to learn these
properties, and performance improvement on validation and test data for this task may instead be
achieved through more rigorous regularization techniques.

7 Conclusion

In our work, we explore the application of minBERT to a multi-task learning problem covering three
natural language processing tasks: sentiment analysis, paraphrase detection, and semantic textual
similarity. We demonstrate that multi-task learning with shared loss backpropagated through the
entire model shows greater potential over models trained sequentially on different tasks. Furthermore,
we find that the shared loss multi-task learning procedure can be coupled with gradient surgery and
regularization techniques to yield performance increases across all three tasks of interest, though the
small observed gain from gradient surgery suggests that conflicting gradients may not be as prevalent
as anticipated during training on these tasks.

However, despite the performance gains shown in our experimentation, there is still room for further
improvement. In particular, further training may be required to allow the model to accurately analyze
more nuanced inputs that don’t contain well-defined sentiment descriptors (for sentiment analysis) or
matching tokens (for semantic textual similarity). It is also apparent that the regularization technique
implemented in our work fails to truly mitigate the issue of overfitting, and thus future work may also
further analyze the regularization procedure or look into alternate approaches.

8

8 Ethics Statement

As is the case with many artificial intelligence developments in recent years, there are a number
of societal risks or impacts that may arise from the widespread deployment of natural language
processing systems like this one.

In particular, if the type of multi-task model explored in this work is deployed at scale, one risk that
may arise is the fact that automated sentiment analysis has the potential to propagate biases. In this
work, we look at ways to improve sentiment analysis on input token sequences without regard to the
token types, and although we train our model on a relatively small dataset, performing this training
on internet-scale data could cause the model to learn to associate certain people/traits/characteristics
with specific sentiments. This can quickly become harmful in propagating biases through offensive
sentiment associations in generated content on large-scale systems. However, there is potential
mitigation for this issue in the form of data pre-processing that looks for tokens related to gender,
race, etc. and randomizes them such that the model doesn’t learn text sentiments based on those
particular terms.

Another risk that may come up from general use of models like the one we work with stems from the
lack of expressiveness of text in semantic textual similarity tasks. More specifically, transcribing text
from audio of speeches/conversations will fail to capture meaning embedded in voice intonations,
and thus purely token-based similarity comparisons between such inputs may suffer. For example,
future video or audio recommendation systems based on spoken content relying on this type of
similarity analysis may present incorrect or even offensive/damaging recommendations to users. As a
possible mitigation for this risk, it may be necessary to augment transcribed text data with specialized
tone-of-voice tokens from which the model can learn to parse concepts like sarcasm that arise from
speech style.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[4] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[5] Da Li, Boqing Zhu, Sen Yang, Kele Xu, Ming Yi, Yukai He, and Huaimin Wang. Multi-task
pre-training language model for semantic network completion. ACM Transactions on Asian
and Low-Resource Language Information Processing, 22(11):1–20, 2023.

[6] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[7] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

[8] Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669, 2022.

[9] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

9

[10] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[11] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. arXiv preprint arXiv:1911.03437, 2019.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and
Steven Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[14] Samuel Fernando and Mark Stevenson. A semantic similarity approach to paraphrase detection.
In Proceedings of the 11th annual research colloquium of the UK special interest group for
computational linguistics, pages 45–52, 2008.

[15] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. * sem 2013
shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43, 2013.

10

A Appendix (optional)

Figure 2: Training and validation accuracies, correlations, and overall scores for sentiment analysis,
paraphrase detection, and semantic textual similarity over 10 epochs of training. The plot trends show
signs of severe overfitting, particularly for sentiment analysis and semantic textual similarity.

11

Learning Rate Reg Dropout SA Dev Acc PD Dev Acc STS Dev Corr Overall Score
1× 10−3 1 0.1 0.262 0.632 NaN NaN
1× 10−3 1 0.3 0.262 0.632 -0.033 0.459
1× 10−3 1 0.5 0.262 0.632 0.028 0.469
1× 10−3 3 0.1 0.262 0.632 NaN NaN
1× 10−3 3 0.3 0.262 0.632 NaN NaN
1× 10−3 3 0.5 0.262 0.632 NaN NaN
1× 10−3 5 0.1 0.262 0.632 NaN NaN
1× 10−3 5 0.3 0.262 0.632 NaN NaN
1× 10−3 5 0.5 0.262 0.632 NaN NaN
1× 10−3 7 0.1 0.262 0.632 -0.063 0.454
1× 10−3 7 0.3 0.262 0.632 NaN NaN
1× 10−3 7 0.5 0.262 0.632 NaN NaN
1× 10−4 1 0.1 0.422 0.648 0.316 0.576
1× 10−4 1 0.3 0.253 0.632 0.276 0.508
1× 10−4 1 0.5 0.385 0.638 0.369 0.569
1× 10−4 3 0.1 0.253 0.632 0.159 0.488
1× 10−4 3 0.3 0.362 0.642 0.315 0.554
1× 10−4 3 0.5 0.286 0.631 0.309 0.524
1× 10−4 5 0.1 0.452 0.681 0.455 0.620
1× 10−4 5 0.3 0.262 0.632 0.063 0.475
1× 10−4 5 0.5 0.262 0.632 0.063 0.475
1× 10−4 7 0.1 0.423 0.678 0.345 0.591
1× 10−4 7 0.3 0.391 0.670 0.388 0.585
1× 10−4 7 0.5 0.262 0.632 -0.058 0.455
1× 10−5 1 0.1 0.368 0.652 0.356 0.566
1× 10−5 1 0.3 0.402 0.632 0.313 0.564
1× 10−5 1 0.5 0.388 0.633 0.353 0.566
1× 10−5 3 0.1 0.379 0.636 0.340 0.561
1× 10−5 3 0.3 0.402 0.632 0.377 0.574
1× 10−5 3 0.5 0.388 0.632 0.383 0.570
1× 10−5 5 0.1 0.363 0.632 0.282 0.545
1× 10−5 5 0.3 0.387 0.633 0.374 0.569
1× 10−5 5 0.5 0.362 0.652 0.333 0.560
1× 10−5 7 0.1 0.365 0.644 0.332 0.558
1× 10−5 7 0.3 0.369 0.654 0.394 0.573
1× 10−5 7 0.5 0.364 0.647 0.276 0.550

Table 6: Validation results on sentiment analysis (SA), paraphrase detection (PD), and semantic
textual similarity (STS) for the hyperparameter sweep over learning rate, regularization strength, and
dropout. Configurations that encountered invalid arithmetic operations during training have some
entries populated with “NaN” (not a number). We observe that the best-performing hyperparameter
configuration uses learning rate 1× 10−4, regularization strength 5, and dropout rate 0.1.

12

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix (optional)

