Handle With Care! A Mechanistic Case Study of DPO
Out-of-Distribution Extrapolation

Stanford CS224N Custom Project

Ryan Park
Department of Computer Science
Stanford University
rypark@stanford.edu

Abstract

Though direct preference optimization (DPO) is popular for model alignment, it
tends to produce out-of-distribution (OOD) behavior in language models. Because
this problem has only been recently noted, it is not well-studied or understood.
By empirical analysis in a synthetic setting, we seek to characterize DPO’s OOD
behavior, exploring if it exhibits signs of sudden generalization ("grokking") that
others have observed with a supervised fine-tuning. We find that once DPO strays
out-of-distribution, it never comes back. Furthermore, we relate the OOD-ness of
DPO policies to KL divergence from the reference model, and give a mechanistic
explanation for how this OOD behavior arises. These results offer practical insights
for aligning models with DPO. Given DPO’s recent popularity in LLM alignment,
these insights are valuable to practitioners seeking to build NLP systems.

Mentor: Archit Sharma (solo project, no external collaborators)

1 Introduction

Recently, large language models (LLMs) have been successful in understanding, conversing with,
and obeying human instruction. This success is in large part due to good alignment methods,
which are algorithms that take a pretrained language model and "align" them with intended use
cases downstream. Many standard alignment methods, such as RLHF (Ouyang et al.| [2022), use
reinforcement learning (RL) to ensure LLMs effectively follow user instructions and obey guidelines.
These methods require practitioners to explicitly model a reward function, which indicates the quality
of LLM generations. However, in recent work, an RL-free alignment method called direct preference
optimization (DPO) has been shown to be a simple and effective counterpart to RLHF-like methods
(Rafailov et al., 2023). By deriving a transformation between LLM policy and optimal reward
function, DPO avoids the need for RL algorithms and is thus much easier to use. Many of the leading
open-source models are fine-tuned with DPqﬂ

Though successful, DPO exhibits strange training dynamics. One fundamental issue with DPO is its
tendency to quickly shift probability mass towards out-of-distribution (OOD) trajectories (Rafailov
et al.,2024). This OOD behavior can be understood as an extreme type of overfitting, where DPO
policies fit behaviors not even present in the train set. This problem is quite recent, and as such, there
is not much work attempting to characterize or understand why/when/how this happens. Answering
these questions would 1) help inform more principled upgrades to standard DPO, and 2) provide
practical knowledge for practitioners attempting to fine-tune models with DPO.

Here, we empirically study this the issue of OOD extrapolation through a case study with a synthetic
dataset. We focus on DPO with the standard Transformer (Vaswani et al., [2023)), since this is most
applicable to modern NLP. Our findings are as follows:

"https://huggingface.co/spaces/open-11lm-leaderboard/open_llm_leaderboard

Stanford CS224N Natural Language Processing with Deep Learning

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

OOD extrapolation is irreversible. While most practitioners only run DPO for a couple epochs, it
is worth considering whether DPO can exhibit "grokking" - i.e., sudden abilities to generalize after a
large period of overfitting (Nanda et al., 2023), (Liu et al.|[2022). We find that this is not the case.

Good DPO policies fall in similar KL regions. By looking only at KL divergence from initial policy
(and letting the 8 parameter/number of steps vary freely), we can estimate which DPO policies will
stay in-distribution and which will veer OOD.

Attention weights drive OOD extrapolation. We argue that DPO tends to focus its updates on
attention weights in a subtle manner, and that we can distinguish between "good" and "bad" DPO
policies by isolating the impact of attention weights on policy KL divergence.

Along the way, we develop new evaluation tools for understanding DPO OOD behavior. We hope
these results provide practical insights on DPO’s strange training behavior, and are useful for those
trying to use DPO for model alignment.

2 Related Work

DPO overview. Given a reference policy mf(y|x) and preference dataset D, DPO starts with the
standard KL-regularized RL objective (Ouyang et al., [2022):

max Bp yoory (v [76 (6, ¥)] = B0k [70(y |) || mrer(y 1) M

where (controls the KL divergence from ¢, 7y is the DPO-trained policy, and ry is a reward
function over D. By deriving a transformation between optimal reward and policy, DPO attempts to
optimize this objective via the following loss (Rafailov et al.| 2023)):

o (Yw |) o (y1 |)
ret) = ~Ep gy |1 1) 2
Coro (i) = ~Era - g (s T8 55— p1ox ST)| 2

where ¢ is the sigmoid function, ¥,, is the preferred completion, and y; is the dispreferred completion.
Importantly, from Eq. [T, DPO derives a reward reparametrization of the form:

mo(y | %)
et (Y | X)
which we call the DPO "implicit reward" here. This is useful for analyzing the behavior of DPO.

ro(y,x) = [log (3)

DPO failures. DPO is particularly unstable after even moderate amounts of training. Prior research
shows that DPO policies” downstream performance collapses after only a few hundred update steps
(Rafailov et al.,2023), (Guo et al., |2024)), (Rafailov et al.||2024). Some hypothesize that this collapse
is due overfitting along spurious features like length (Park et al., [2024)). Others argue that offline
methods like DPO fail when the reward peak is far from the reference model, which may be the case
for some alignment tasks (Tajwar et al.,[2024)). While some solutions have been proposed, such as
using a reference-free version of DPO (Meng et al.| |2024)) and extending DPO to the online setting
(Guo et al.| |2024), the issues driving DPO OOD behavior are not fully understand.

Mechanistic interpretability and grokking. Nanda et al.| (2023 and Liu et al.| (2022)) present
examples of principled interpretability studies that inspired this work. [Nanda et al.| (2023)) shows
that after a long period of training, a 1-layer Transformer suddenly switches from a memorizing
algorithm to a generalized algorithm in several toy settings (i.e., it "groks"). [Liu et al.[(2022) argues
that grokking behavior is due to effective representation learning in the embedding space. These
observations motivate this work, which partially explores whether DPO can grok as well.

3 Approach

3.1 Overview

To understand the dynamics characterizing OOD extrapolation, we design a synthetic toy dataset
modeling the identity function via preference pairs on the number line. We run the standard DPO

pipeline on this dataset with a 1-layer decoder-only Transformer (Vaswani et al, [2023). Let 7
represent this model. To compute 7, we run supervised fine-tuning (SFT) according to Eq.]

ﬁSFT (ﬂ—ref) - _E(Jc,y)ND [IOg Tlref (y | {E)] (4)

After SFT, we run DPO according to Eq. 2] We do not pretrain 7 before running SFT. The goal of
this approach is to provide a fast and interpretable setting in which we can query DPO behavior.

We run three experiments. First, to see if DPO exhibits grokking, we run DPO for an abnormally
large amount of epochs (100), analyzing OOD behavior. We recognize this is non-standard, but note
that grokking (if possible) usually requires an exceedingly long training horizon.

Next, we run a sweep over 30 3 values, running DPO for 3 epochs and sampling from a test set 10
times per epoch, producing ~3.5M individual samples. We consider how looking at KL divergence
via Eq. [6|admits a better understanding of when DPO goes OOD and when it doesn’t.

Finally, we run mechanistic experiments to analyze what parts of the trained policies (Transformers)
are responsible for OOD behavior, and how DPO modifies them during training.

3.2 Synthetic dataset

This dataset is inspired by |[Nanda et al.|(2023)), |Liu et al.[(2022)), and Im and Li (2024), but is original.
It attempts to model an identity function on a subset of the number line. Let S be a set of positive
integers, and W be a fixed window size. For all s € S, for adjacent numbers y1,y2 € [s — W, s+ W],
lety; > yo if |y1 — s| < |y2 — s| and vice versa (y; > y- denotes y; is preferred over y1). The dataset
D is the set of all such (s, y1, y2) tuples (for SFT, we use (s, y1)). Intuitively, this dataset is a set of
preferences clustered around each s € .S, incentivizing the model to emulate the identity function by
preferring numbers closest to s. We split D into a train and test set by randomly partitioning on s, so
tuples with the same prompt stay together. We consider s to be the prompt and vy, to be the response.

For the grokking experiment, we use W = 5 and S = [1,99] (337 train, 145 test examples). For
other experiments, we use W = 10 and S = [100, 500] (3754 train, 3755 test examples).

3.3 Experimental details

We use a 1-layer decoder-only Transformer, with dp0q.1 = 128 and 4 attention heads (103K parame-
ters). We use learned positional embeddings, LayerNorm and residual connections throughout, as
well as the standard post-attention 2-layer GeLU feed-forward network (see Vaswani et al.[(2023)) for
full architecture details, excluded here for brevity). Its input is a tokenized representation of s € S,
and its output is a sequence of digits. Our implementation is from scratch in PyTorch.

We tokenize each dataset tuple (s, y) via the format "ABC=XYZ." where = and . are special tokens,
and each digit is its own token (so the vocabulary size is 12, including a pad token). We do not pad s,
instead right-padding the concatenated sequence s|y batchwise. Sampling is done greedily.

For the grokking experiments, SFT and DPO training is done for 100 epochs with AdamW (learning
rate 10~*, standard weight decay), batch size 512, and gradient clipping threshold of 5. AdamW is
used since explicit regularization helps SFT models grok (Nanda et al.,|2023). DPO models were
trained with 5 € {0.01,0.02,0.1,0.2,0.5}.

For other experiments, SFT was run for 10 epochs with Adam (learning rate 10~2), and DPO run for
3 epochs with RMSprop (learning rate of 5 x 1075), all with batch size 16 and no gradient clipping.
30 3 values were chosen to be spaced evenly on a log scale in [1072, 10°]. 30 model samples on the
full test set were taken uniformly during 3 DPO epochs. All training was done on a Macbook Air M1.

3.4 Evaluation metrics

The main tool of analysis in this study is the KL divergence, which for two discrete probability
distributions P(z) and Q(z) is defined as

D[P 1| Q] = Y Pla log(?))

z~P ()

We can relate the DPO implicit reward given in Eq. [I]to this quantity by noting that

mo(y | x) }

1
Fealy [x)] Yl {BW(Y’XJ ©)

DKL [7T9 H '/Tref] = Eywﬂg\x |:10g

This is fairly standard in the DPO literature (Rafailov et al.l [2023). Given a model M, we define
KL(M) as the scaled reward in Eq. E] evaluated over the test set prompts.

Again using the DPO implicit reward, we define the DPO classification accuracy Acc(y.,, yi,) as true
if r9(yw,) > 7r9(y;, x) and false otherwise. Similarly, let Margin(y.,, yi, ©) = r9(Yw,) — 7o (y1, T).
These are from [Rafailov et al.| (2023)) as well.

Next, we consider the sequence regression error, as well as our measure for OOD-ness. Let Y be
a string of tokens sampled from the Transformer given x. We define Error(Y, z) as |[Y — z| if YV’
is a valid integer, or max S — min S if Y cannot be parsed. Additionally, we define the binary
measure OOD(Y, z) as true if Y is not parseable or Y ¢ [x — W,z 4+ W], and false otherwise.
We define OOD-ness in this way since in the train set, every prompt-response tuple (x,y) obeys
y € [x — W,z + W]. So any y not in this range is not in-distribution.

For the mechanistic experiments, we define the weight delta between two models, which is useful for
measuring how much a model has changed during training. Given models M, M, with the same set
of parameters Params, and optionally) C Params (some subset of all the parameters), let

WeightDelta(M, M) = Z [M:[P] — Ma[P]|| M

P cParams

1

FracWeightDelta(Mq, M3, Q) = WeightDela (M, 11;)

D I[P = M[Pll (®)
PeQ

Note that FracWeightDelta is useful for measuring how much a part of a model (e.g., attention
weights) has changed relative to the total model change after DPO. Note that the WeightDelta metric
is a simple and standard way to measure model difference.

Finally, we consider model surgery as a useful way to measure the contribution of a particular subset
of weights. Given two models M, M>, consider replacing some subset of the parameters (@) in M
with the equivalent weights from M>, and call this new model M. Choose any metric D. Roughly,
we consider the "post-surgery improvement" under Q to be D(M;) — D(M). This measures how
much @ improves or degrades performance by removing it, sort of a post-training ablation study.

4 Experiments

Here we present qualitative and quantitative results for each of the three experiments in the following
order: grokking (Sect. |.1)), 5 sweep (Sect. |4.2)), mechanistic interpretation (Sect. {4.3).

4.1 TIrreversible divergence in DPO

Here, we evaluate DPO over an extensive training horizon to see if it ever groks, i.e., if after a
period of overfitting, the model suddenly learns to generalize (in this case, generalization means
implementing a perfect identity function). Nanda et al.|(2023)) show grokking happens in SFT through
a phase change from memorization to generalization. We find this does not happen in DPO.

Fig. [shows various metrics over the course of 100 epochs of DPO (and SFT, plotted for com-
parison). We see that DPO diverges towards a policy producing out-of-distribution actions 80% of
the time, despite ms outputting nearly no OOD responses. A similar pattern holds for sequence
error. Interestingly, DPO exhibit near-monotonic improvement in margin and classification accura-
cies, both quantities that depend on DPO’s ability to act as an implicit reward function (i.e., higher
margin/accuracy = more probability towards preferred sequences compared to dispreferred ones).
Clearly, DPO learns that w(y,, |) > m(y; | «). Given this, we hypothesize that DPO learns
m(yoop |) > 7(yw |) > 7w(y; |); i.e., a correct ordering of the preference pairs, but one that is

Fraction of out-of-distribution responses selected by policy Eval sequence-level regression error

104 250 —— DPO (B=0.01)
—— DPO (B=0.05)
1] —— DPO (B=0.1)
£ 08 2001 —— DPO (8=0.2)
° o —— DPO (B=0.5)
»E z [—e— SFT
8 8 v NN
c ©] \
2 061 € 150
2
2 7}
B >
@ 4
4 @ 100 -
© 0.4 g
5 DPO (B=0.01) S
,5 DPO (B=0.05)
g —— DPO (B=0.1) 50
3
5 0.2 —— DPO (=0.2)
=— DPO (B=0.5)
—e— SFT 0
" : r v " T :
0 20 40 60 80 100 0 20 40 60 80 100
Number of epochs Number of epochs
Eval reward margin growth over training Eval reward classification accuracy growth over training
104 —— DPO (=0.01)
—— DPO (B=0.05) 068]
—— DPO (B=0.1) 1
® —— DPO (8=0.2) z
0.8 1 4
g —— DPO (B=0.5) 5 068
2 g
3 S 0.64 1
G 064 2
[
B < 0.62 1
e 4
© <
% o 0.60 1
S 2
$ Z 058 —— DPO (B=0.01)
6 0.2 2 —— DPO (B=0.05)
3
© —— DPO (B=0.1)
0.56
= —— DPO (B=0.2)
0.0 1 —— DPO (B=0.5)
T T T T T T 0.54 + T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Number of epochs Number of epochs

Figure 1: DPO does not grok. Top row: SFT and DPO training runs overlaid on the same plot.
Yellow region on all plots indicates part of training where DPO stays in-distribution. Bottom row:
DPO reward evaluation metrics improve over training, despite poor generalization.

still dominated by OOD actions. This holds even after the first few DPO epochs; we do not need all
100 to see this effect (the long training run was useful for noting the lack of grokking).

Therefore, we argue that unlike in the SFT case, grokking does not happen DPO. During both types of
training, progress is made even when metrics stagnate (that is, internally, the model is likely moving
towards a simpler solution due to regularizing effects from the optimizer, as hypothesized by
(2023)). But in the SFT case, this progress eventually leads us to a generalized solution; in the
DPO case, this progress takes us increasingly out-of-distribution. While this is a sythethic experiment,
we argue that this reasoning holds in other uses cases as well. Other research (Rafailov et al.| (2024),
(2024)) has shown similar OOD effects despite reward metrics improving - the same
pattern we observe here. We hypothesize that in those cases as well, grokking is unlikely, since the
model’s gradient updates continually push it OOD instead of towards a generalizing solution.

4.2 In-distribution policies have similar KL divergences

Though DPO does not grok, it is still a very useful algorithm for alignment. This raises the question
of "when does DPO work?" i.e., under what conditions are DPO policies "good" (at least, not OOD).
In this section, we argue that optimal policies lie in the same general KL region, regardless of how we
get there. It is known that DPO produces policies whose KL is strongly correlated with log 5 and the
number of update steps (Rafailov et al.,[2024). Let N be the number of DPO update steps so far. In
theory, given two policies A, B with different 5 parameters, with large enough N we can find some
checkpoints A’, B’ so that KL(A") is close to KL(B’). Because A’ and B’ likely come at different
B3, N values, there is no reason a-priori to believe that the behavior of A’ and B’ would be the same.

oKL divergence across § and training steps 2.25 0.2,<L divergence vs. OOD across all checkpoints
®
®
2.00 0.20F <ot'. 1
1.75 € ©om®
o 00 @
= 0.18F ”50]
c 1509 3 8
S 2 So.16fF ®e] 5
S 1258 3 ¢ o
o 2o 9 .
= o 50.141] 41071 %
5 1.002 & - ©
© 3
2 o %o012f 4] by
w 0.75% § ° e
) (1)
os0 g00f . &)]
[o @
0.08} » X]
0.25
—e— | east out-of-distribution policies)Xﬁ Least OOD policies
0.06E. L I L L 4 dqp-2
0fy=2 10 100 000 0.0 05 1.0 15 2.0 10
B parameter KL divergence

Figure 2: OOD-optimal policies have similar KLs. Left: KL divergence evaluated along the 30 x 30
(8, N) sweep. White line indicates KL of policies that minimize OOD for each 8. Right: OOD
effects as a function of KL divergence. Pink region corresponds to the KL level set from the left.

Weight norm delta vs KL divergence 100
T T T T]

Attention weights for OOD vs. non-OOD policies

ﬂ ﬂ . ,
&
2 ! 23
' pr J2s
0.5F i 9 b
0.0f B
1 1 L L L 10—2
132.8 132.9 133.0 133.1
0.0 Weight norm delta

Figure 3: Weight deltas do not fully explain OOD behavior. Left: attention maps for OOD (left,
policy A) and non-OOD (right, policy B), computed on a prompt for which A fails to give an
in-distribution response, but B produces a correct one. Right: WeightDelta metric vs KL divergence.

KL divergence
=
o
T
|
.
-
o
L
B parameter

IS

While we do not claim anything about A’, B’ directly, we argue that the optimaﬂ policies produced
by training A and B, will, in general, have similar KLs. That is, while training A, we will produce
some A* along the way that minimizes OOD effects. Similarly, there is always some B* that is the
least out-of-distribution out of all B’s checkpoints. We give empirical evidence that A* and B* have
similar KLs. Within our fairly large sweep, all optimal checkpoints M* have similar KLs.

To see this, we plot the KL divergence across our 30 x 30 (5, V) sweep in the left side of Fig.
We plot the optimal policies M* for all combinations of (5, V), noting that this line stays in a
bounded KL region (from 0.25 to 0.5). The right side of Fig. 2] further confirms this. We see that
KL divergence and the OOD metric have a U-shaped relationship, with the best policies across all
[values falling in the bottom of this curve. Practically, this means that for most reasonable 5, N
choices, we have some empirical reason to believe that KL will fall in a consistent range.

4.3 OOD behavior stems from attention head divergence

Now that we have established the relationship between KL and OOD policies, it is natural to ask what
causes OOD behavior and KL to be so tightly linked. Here, we mechanistically explore what DPO
does to model weights, comparing an OOD policy (policy "A", with 8 = 0.01) with an in-distribution
policy (policy "B", with 8 = 1.0). Consider KL a resource to be spent by DPO, since the KL term in

2Optimal in the sense that the OOD metric defined earlier is minimized.

Evolution of OOD behavior for 8 = 0.01 . DPO splends KLIdiverger?ce on atltention \INeights
T T T T T T

0.22
—#— Post surgery, non-attention weights
0.20F 1 2.0F —e— Post surgery, attention weights]
3oasf 1 1sf]
£
[
©0.16[] é 1.6F]
o o
o L 1 51.4f b
So.14 g4
bS] °
L] 1.2f b
§% <
9]
® 0.10[{ 1or 1
w
0.08f 1 08r 1
0.06 1 1 i i i L — 0.6L . I | | 1 L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch fraction Epoch fraction

Figure 4: KL divergence is transferred to attention weights. Left: training step vs. OOD metric for
B = 0.01 (policy A). Right: KL divergence after model surgery. Green is KL if we substitute out the
attention weights, blue is KL with non-attention weights substituted out.

1.0 Weight delta does not explain KL divergence Attention weights control OOD behavior in DPO
O T T T T T T T T T T T T T
11.2 0.0251 I\\ P . B
0.8 AR\ o
8 1.0 o 0.000F 1
c =
5 o g-0.025F]
o
€ 0.6 0.8 ¢
£ g8
£ 2 8 -0.050f)]
° 06> c \‘
041 3 g-0.075f \ 1
(] X = \
= 04 @® =\
28-086-00—45-00-0508-00—6-00-95—06-05—06-00—96-009505-0505-0096 0094888 O —0.100 \ B
0.2F \
—w#— Fraction of weight delta due to attention]0-2 —0.125F — Post-surgery, non-attention weights N i
—e— KL divergence due to attention block == Post-surgery, attention weights \
! 1 | ! 1 ! .
005G 05 To 15 20 25 30 °° 00 05 1.0 15 20 25 3.0
Epoch fraction Epoch fraction

Figure 5: Attention weights are targeted by DPO. Left: purple line is fraction of weight change from
Tt in the attention block, blue line is the post-surgery KL in Fig. 4] Right: Dotted/dashed lines
are the same policies as in Fig. |4} but we plot OOD(A’) — OOD(A) instead of KL(A'). Red region
indicates where attention weight surgery harms performance, green indicates where it helps.

Eq. [[jmeans we only have so much ability to deviate from ¢ (Azar et al [2023). We argue that
1) KL is more helpful in understanding DPO’s modifications than standard weight deltas, 2) DPO
spends its KL budget on changing attention head weights, and 3) OOD effects arise when attention
weights deviate significantly from 7. Note that attention weights are all parameters associated with
the multi-headed attention module, i.e., linear projections include:

One natural way to understand DPO’s modifications is to compute norm-based weight deltas (Eq.
[7). However, we argue that this is insufficient. In the left half of Fig. 3] we see that both A and B
compute qualitatively similar attention maps, even when their resulting samples are vastly different.
This is quantitatively reflected in the right half of Fig. 3] where the same weight delta induces
different KL differences depending on /3 (and as established in previous sections, KL is important
when thinking about OOD effects - OOD policies generally have high KL and vice versa).

Instead, by performing an ablation-like study via model surgery, we see that DPO spends its KL
budget on attention weights. That is, attention weights contribute most to the KL difference between
0OOD and non-OO0D policies. To see this, we substitute the attention weights in A with those from
B. That is, we replace the attention weights in the OOD model with the attention weights from the
non-OOD model. Let this new model be A’. We then compute KL(A’). In the right half of Fig.
this is the green curve; it grows slowly and does not match A’s divergent OOD behavior (left half
of Fig.). Replacing the OOD attention weights with non-OOD attention weights tames the KL

3 Attention weights contribute around 65% of the total parameter count (65K/104K).

explosion associated with OOD behavior. We say that the green curve is the KL divergence attributed
to the OOD attention weights, since we control for the effect of all other parameters via surgery.

Substituting out the non-attention weights instead gives us the blue curve in the right half of Fig.
Ml This curve explodes- that is, replacing the non-attention OOD weights with weights from the
non-OO0D policy doesn’t do much to combat the OOD behavior. This result is reflected in the right
half of Fig. 5] in which we do a similar surgery operation but consider how OOD behavior changes
instead of KL. If we replace the attention weights in the OOD policy (dotted line), then we get a
dramatic dip in the OOD behavior of the modified model. But if we replace the non-attention weights
in the OOD policy (solid line), we do not see much change in model behavior.

One question remains- is this sensitivity to attention weights simply due to larger gradient updates
to these weights? In the left half of Fig. [5] we argue no. Between each successive checkpoint, the
fraction of weight change in the attention block is only ever 25% of the total weight change from
T, indicating that DPO does not apply disproportionately larger updates to the attention block.
Even so, the KL divergence attributed to the attention block via the surgery experiments indicate
that these weights are most heavily modified by DPO. This leads to an interesting conclusion: DPO
somehow selectively updates the attention weights without applying large-magnitude updates. It is an
overabundant amount of these attention weight updates that causes OOD behaviorE]

5 Conclusion

Via a toy dataset and several sets of experiments, we study the OOD problem in DPO at a macro and
mechanistic level. We show that due to OOD effects, DPO does not exhibit grokking. To explain this,
we hypothesize that both preferred and dispreferred sequences are assigned lower probability than
out-of-distribution trajectories. Next, we show that OOD effects are minimized in a particular KL
region across different 3 values. Finally, we analyze what DPO actually does to models to push them
OOD, arguing that DPO imparts high KL to attention blocks specifically, causing policies to go OOD.

The primary limitation of this work is that it only considers a specific toy setting. It would be
very interesting to see if these theories hold up in other settings, particularly real-world ones with
billion-parameter models and larger datasets. However, we hope we have provided an insightful
analysis into an open research question with large real-world impact. Additionally, the analysis tools
presented here (KL/OOD model surgery in particular) may be useful for other interpretability studies.

By doing this project, I got really comfortable with how Transformers and DPO works. Through fixing
many bugs in my implementation, I also learned a lot about how to debug and prototype models. It
was very fun to think deeply about why DPO behaves the way it does, and try to verify my hypotheses
in a quantitative and scientific way.

6 Ethics Statement

DPO is likely the last algorithm an LLM "sees" before it hits real-world users. As a result, any
work surrounding DPO has the ethical risk that comes with working with algorithms interfacing with
users. Specifically, by applying the methods in this paper and exploiting DPO’s OOD behavior, a
malicious actor could figure out how to fine-tune/jailbreak safety guidelines, or embed hidden attacks
by forcing OOD behavior that bypasses security measures. Mitigating this risk requires further
technical progress in interpretability, since understanding LLMs help us to train ones that can’t be
fooled by downstream fine-tuning. This could also be mitigated by strict red-teaming and testing
protocols for trained LLMs deployed to users, designed to flesh out any mistakes/malicious content.

Another possible ethical issue is that DPO is very data-hungry, requiring high-quality preference
data and human annotations. This data isn’t always ethically sourced, sometimes coming from shops
where workers are underpaid and exploited. This research specifically focuses on DPO OOD effects,
which could potentially be mitigated by including more quality data, further incentivizing bad actors
to exploit workers. To mitigate this, there needs to be strict, high-level policy regarding data collection
(hopefully at the government level) that counteracts the growing data-hunger with ethical guidelines
for human data collection.

“This conclusion would have been difficult to draw from the weight delta argument alone.

References

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. |A general theoretical paradigm to understand learning from human
preferences!.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqgi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. 2024. Direct
language model alignment from online ai feedback.

Shawn Im and Yixuan Li. 2024. Understanding the learning dynamics of alignment with human
feedbackl

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike Williams. 2022.
Towards understanding grokking: An effective theory of representation learning.

Yu Meng, Mengzhou Xia, and Dangi Chen. 2024. |Simpo: Simple preference optimization with a
reference-free reward.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. 2023. [Progress
measures for grokking via mechanistic interpretability.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. 2022. Training language models to follow instructions with human feedback.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. 2024. Disentangling length from
quality in direct preference optimization.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. 2024. Scaling laws for reward model overoptimization in direct alignment
algorithms.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. 2023. Direct preference optimization: Your language model is secretly a reward model.

Fahim Tajwar, Anika Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. 2024. Preference fine-tuning of 1lms should leverage
suboptimal, on-policy data. ArXiv, abs/2404.14367.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. |Attention is all you need.

http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2403.18742
http://arxiv.org/abs/2403.18742
http://arxiv.org/abs/2205.10343
http://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2403.19159
http://arxiv.org/abs/2403.19159
http://arxiv.org/abs/2406.02900
http://arxiv.org/abs/2406.02900
http://arxiv.org/abs/2305.18290
https://api.semanticscholar.org/CorpusID:269293401
https://api.semanticscholar.org/CorpusID:269293401
http://arxiv.org/abs/1706.03762

	Introduction
	Related Work
	Approach
	Overview
	Synthetic dataset
	Experimental details
	Evaluation metrics

	Experiments
	Irreversible divergence in DPO
	In-distribution policies have similar KL divergences
	OOD behavior stems from attention head divergence

	Conclusion
	Ethics Statement

