KAN-based Distillation in Language Modeling

Stanford CS224N Custom Project

Nick Mecklenburg
Department of Computer Science
Stanford University
nmecklen@stanford.edu

Abstract

Kolmogorov-Arnold Networks are a newly proposed challenger to the multilayer
perceptrons so pervasive throughout many architectures in modern day deep learn-
ing. Their dynamics and applicability to the domain of language modeling is as
of yet unexplored, so in this paper we study their applicability to model distilla-
tion, seeing if we can replace MLPs in a pretrained transformer language model
with smaller but just-as-performant KANs for a reduction in parameter count. We
discover KANSs are capable of learning the complex and high-dimensional distribu-
tion of natural language, though they are a poor choice for MLP-approximation
compared to the simple baseline of distilling into smaller MLPs.

1 Key Information to include

* Mentor: Shikhar Murty
* External Collaborators (if you have any): None.
 Sharing project: No.

2 Introduction

The multilayer perceptron, or MLP, is a fundamental building block in many state-of-the-art neural
network architectures today, used across a wide suite of modalities and use cases, with theoretical
roots tracing back to the early origins of neural networks. |[Liu et al.| (2024) recently challenged MLPs
in their introduction of Kolmogorov-Arnold Networks, or KANSs, framed as a more interpretable
and powerful alternative that often learns the same task in orders of magnitude fewer parameters.
That KANSs are purportedly so parameter efficient begs the question of whether they can be used for
distillation in more complex networks, used to compactly approximate equivalent MLPs. This study
endeavors to explore the feasibility of KAN-based distillation in language modeling.

The original KAN paper explored many toy use cases — low-dimensional data generated from
simpler functions or compositions of functions that lend themselves well to the Kolmogorov-Arnold
representation theorem (Givental et al.|(2009); Braun and Griebel| (2009)) upon which the architecture
is based. The authors note it is not immediately clear how well KANs may perform for more complex
distributions common to, say, natural language or computer vision, especially at modern-day scale.
They further observe that training KANs is about 10x slower than training equivalent MLPs — though
they claim that since KANs need 100x fewer parameters, this is not a fatal flaw. These are our two
greatest challenges in terms of KANs being an attractive drop-in replacement for MLPs, and we
explore them here; this is the first in-depth study to our knowledge that applies the KAN architecture
to the natural language domain.

On motivation, state-of-the-art large language models are only growing in size, with models like
Llama-3 and GPT-3 reaching 70 and 175 billion parameters (Meta) (2024); Brown et al.| (2020)),
respectively. In GPT-2 (Radford et al.| (2019)), the MLPs present in each decoder block collectively
make up 63.1% of the model’s parameters: being able to compact these layers into orders of magnitude

Stanford CS224N Natural Language Processing with Deep Learning

fewer parameters would bring about a host of benefits, from a lower environmental impact in running
the models to enabling them to fit in fewer GPUs, making them cheaper and more accessible to run.
Given the increasing pervasiveness of large generative models in society across all fields, the further
potential of making these layers more explainable is of large importance, especially for sensitive
fields like medicine and justice.

In this work we focus on decoder-only based transformers and find KANs are unfortunately not a
good candidate for distillation via MLP-approximation. We do get the promising result that KANs
are powerful enough to learn the complex, high dimensional distributions inherent to large language
modeling. When it comes to approximating some existing MLP by training on its input/output vectors
as is typical in distillation, however, KANs are not as performant as simply retraining with MLPs
when the parameter budget is controlled, at least for the shallower layers of the transformer.

3 Related Work

KANSs as proposed in|Liu et al.| (2024) draw from the Kolmogorov-Arnold representation theorem,
as opposed to the universal approximation theorem (Hornik et al.| (1989)) that underlies MLPs.
Specifically, Liu et al. reformulate the classic Kolmogorov-Arnold representation theorem as an
[n,2n + 1,1] dimensional KAN and propose an extension to arbitary depths and widths. A key
difference between KANs and MLPs are that KANs have learnable activation functions on edges,
as opposed to fixed activations on nodes as is common in MLPs; KAN nodes merely sum over all
their inputs. In addition to the aforementioned limitations regarding training time, distributional
complexity, and unknown applicability that partially motivate this study, many of the architectural
and hyperparameter choices in the original KAN proposal are underexplored, like the choice of
basis function for the activations (there, B-splines). Early works are already starting to explore the
implications of these choices, such as|Li (2024), both for accuracy and efficiency — and we find the
selection is quite imperative to good performance, as detailed in §5.3]

The classic paradigm for knowledge distillation involves a large, performant "teacher" model trained
on some task and a lightweight "student" model that we want to adapt to that task, often training
the logits of the student model to be as close as possible to those of the teacher model over a wide
variety of inputs (Hinton et al.| (2015); Ba and Caruanal (2014)); Tang et al.[|(2019))). In the domain
of natural language, a common variation of this strategy is rather than training on logits, the output
text of the teacher model is used instead (e.g., [Hsieh et al.|(2023)). For this work, since we focus on
approximating individual MLPs rather than the end-to-end language model, we adopt the style of the
former setup.

4 Approach

For this work, we choose GPT-2 (XL) as our distillation target as it is open source, accessible enough
at 1.5B parameters to fit in a single GPU, and relevant in its applicability to its successors, GPT-3,
GPT-4 (OpenAl et al.| (2024))), and beyond. GPT-2 has 48 decoder blocks, each with one shallow
MLP of hidden dimension 6400 from model dimensionality 1600, meaning about 983M parameters
of the 1.5B come from MLPs alone.

4.1 Dataset Generation

First we must synthesize datasets for performing our distillation on a given MLP. We run forward
passes over unpadded text through the pretrained model and leverage PyTorch forward hooks to
collect (input, output) tensor pairs — each of shape (sequence_length;, d_model) — for each example
i, for each MLP of interest. Since these MLPs are permutation invariant, transforming each token’s
representation irrespective of position or context, we drop the boundaries between input examples for
our tensors, concatenating on the first dimension to get two large N x d_model tensors, one for MLP
inputs and the other for MLP outputs. Here NN is the total number of examples in our distillation
dataset, and it equals the number of tokens we passed through the pretrained model. We do a 90/10
train/val split on these matrices to form our final datasets for distillation, and an 80/20 split for layer
depth scaling (as introduced in section §4.3). Default fp32 precision is used and preserved throughout
the study.

4.2 Baselines

For a first global baseline, we make a copy of the pretrained MLP (MLP,) and add to each parameter
element a random Gaussian perturbation € ~ N (0, 02), where o; is the standard deviation over
all entries in the overall weight or bias matrix that contains the parameter. Then, for each KAN
experiment, we create a second baseline (MLP,., r for retrain), instantiating a new MLP of the
same architecture as the source MLP with parameter count approximately equal to that of the KAN
(achieved by shrinking the hidden dimensionality as needed). We train the MLP,. weights from
scratch over our tensor data. The first baseline is meant to give us a sanity check for the sensitivity of
the parameters and a figure which we must get our KANs to beat. The second baseline probes the
ability of the MLP architecture to (re-)approximate the source function given the same parameter
budget.

4.3 Setup

We select a single layer’s MLP from GPT-2 to assess KAN-based distillation feasibility as we vary the
parameter count across MLP,.s and KANs from about 2.5M to 20M. The first layer’s MLP is chosen
as intuitively it is the most important to get right; small errors earlier in the model may cascade in
subsequent layers’ computation to greatly degrade performance.

For our KAN implementation, we leverage the FastKAN library from |Li| (2024). We notice this
implementation is missing bias adjustments compared to the original KAN library, so we adapt the
source slightly to add them in after empirically finding they provide lift, but the library is otherwise
used as is. For GPT-2 inferencing and LLM evaluation (see §5.1)), we leverage the transformers
libraries (Wolf et al.| (2020)).

After the distillation study on the first MLP, we then fix the parameter count to be at full (undistilled)
scale and compare MLP,. vs. KAN performance as we vary the layer depth of the source MLP. The
goal here is to understand whether it is easier or harder for KANs/MLPs to approximate the different
functions over the depth of the model.

5 Experiments

5.1 Evaluation method

For the quantitative evaluation of our MLP approximation experiments, we use the MSE scores
between our predicted and ground-truth output vectors. Once we have some approximate MLP,.
or KAN to substitute a given source MLP in the model, we also would like to assess the impact of
the substitution to the downstream model performance; for this, we select three datasets used in the
original GPT-2 paper, LAMBADA (Paperno et al.|(2016))), WMT-14 FR-EN (Bojar et al.| (2014)),
and CNN/DailyMail (Nallapati et al.[(2016)). We use the default quantitative metrics for these
datasets as used in the GPT-2 paper — accuracy for final-word prediction for LAMBADA, BLEU for
WMT-14 FR-EN, and ROUGE score for CNN/DailyMail. Prompting strategies and preprocessing
(or the lack thereof) follows the methodology laid out in the GPT-2 paper, if available. Note we use
subsamples of 500, 100, and 500 from the test splits for each of the three datasets, respectively, due to
compute budget reasons, though we find this is nevertheless sufficient to tease out end-to-end model
degradations.

5.2 Data

For our text data, we use subsamples from BookCorpus (Zhu et al.| (2015))). We observe that the
distribution of BookCorpus is heavily skewed towards shorter text sequences compared to the full
context length that GPT-2 supports (see appendix [A)), which may be cause for generalization concerns
once we plug these modules back into GPT-2 — even though the MLPs are permutation invariant,
there should still be some signal in the data from the positional embeddings. Empirically we find no
such universal catastrophic drop however between the base model and our modified models even on
longer context datasets like CNN/DailyMail, where ROUGE score is on par with the base model after
making some layer substitution (e.g., a KAN for the final layer’s MLP, see section §6)).

Distillation Comparison between KANs and MLPs

— MLP,
KAN

0.07 4

0.06

0.05

0.04

Final MSE

0.03 4

0.02 4

T T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Parameter Count le7?

Figure 1: Comparison of MSE loss in approximating source MLP function between KANs of varying
parameter counts and MLPs given equivalent parameter budgets, both trained up from scratch.

With respect to dataset size, we observed that while final MSE consistently plateaus after about 50
epochs (see appendix [B) given a fixed number of examples, we do see further performance gains
if we increase the subsample size (see appendix [C| for an example). Nevertheless, we find 50,000
examples is more than enough for assessing distillation capacity between MLPs and KANs for the
first transformer layer’s source MLP. For the layer depth scaling in §6.2] we use a smaller subsample
at 25,000 examples to speed up iteration time.

5.3 Experimental details

We arrive at using the FastKAN library for our KAN implementation by way of iteration. We start with
the original PyKAN code from|Liu et al.| (2024) and quickly find it too slow and inaccurate for our high-
dimensionality and larger dataset-size use case. This motivates us to try the efficient-kan library
from Blealton| (2024) which achieves many orders of magnitude speed-up by avoiding the expansion
of intermediary variables in calculating each activation function. After exhaustive hyperparameter
exploration on GPT-2 (small), our KAN MSE losses are off by an order of magnitude even when
given the same parameter budget — until we try using the FastKAN implementation with its choice of
Gaussian radial basis functions which bring scores up to par at least for the full parameter budget
case.

With respect to hyperparameters, for both baselines, we have no modeling hyperparameters to tweak
as there is no training in the perturbation case and the architecture is fixed in the retrain case. For
KAN experimentation, we face a wide variety of modeling hyperparameters and use GPT-2 (small)
to inform our selection; ultimately we constrain ourselves to single-hidden-layer KANs of varying
widths as we find these perform the best in this setting. Grid size, grid range, base activation, and
other choices are kept at library defaults.

For training, we find MSE loss, no regularization, 512 batch size, 1 x 10~3 learning rate, 50 epochs,
AdamW optimization, and an exponential learning rate schedule with gamma=0.95 works best for
both KANs and MLPs.

GPT-2 (Small): Distillation Comparison between KANs and MLPs

— MLP,

0.22 4 KAN

0.20 4

0.18

0.16

Final MSE

0.14

0.12 4

0.10 A

0.08 A

1 2 3 4 5
Parameter Count le6

Figure 2: Repeat of distillation experiment, comparing MSE loss in approximating source MLP
function between KANs and MLPs of varying parameter budgets, but for GPT-2 small which has a
lower model dimensionality of 768.

6 Results

6.1 KAN-based Distillation

Figure [I] shows the results of our distillation experiment. We observe that KANs are able to approxi-
mate the source MLP to a great degree — all MSEs are on the order of 1 x 10~2 for both MLPs and
KANSs for all parameter counts, meaning the distribution is not so complex or so poorly suited for
Kolmogorov-Arnold representation theorem that the KAN cannot pick it up in its entirety, which was
a question we aimed to answer in this study. Our perturbation baseline, MLP,, averaged 0.381 MSE,
and we score a completely random MLP as well (with zeroed out biases and zero-mean Gaussian
initialization with ¢ = 0.02 for linear weights, per the GPT-2 defaults) to see an average of 0.524
MSE. Both of these figures are much larger than our trained results (hence why they are omitted from
figure[T). The KANs are, however, consistently underperforming MLPs given the same parameter
budget, meaning if our true goal was distillation at the end of the day, we would be better off using a
smaller MLP to do the job rather than a KAN.

Given the disparity between this result and the parameter efficiency claims of |Liu et al.|(2024), we
wonder if during the pretraining of GPT-2, the MLPs learned some set of functions that they were a
more natural fit for compared to KANSs; that is, it is unclear if had we pretrained with smaller KANs
from the beginning, the KANs could have learned some different, better-suited set of function that
jointly yield the same end-to-end language model performance as the larger MLP-based model. But
that would no longer be distillation.

Figure [2| hints that instead the performance delta may be attributed to KANs struggling with the high
dimensionality of the space, since for the lower dimensional GPT-2 small, the difference between
MLPs and KANS is less pronounced, especially in the higher parameter budget regime where KANs
approach performance parity. This is an interesting result if only for motivating an interpretability
study for how the KAN is making its language predictions after indeed achieving MLP parity.

6.2 Layer Depth Scaling

The inability of KANSs to beat MLPs for the first transformer layer over all parameter scales raises the
question of how they might compare for the other layers, too. In figure[3] we fix the parameter budget
to be full scale and train both a KAN and an MLP to approximate the source MLP at some decoder

Approx. MSE vs. Transformer Block Index

0.6 1
— MLP

KAN
0.5 A

0.4 1

0.3 1

Final MSE

0.2

0.0 4

T
0 10 20 30 40
Layer Idx

Figure 3: MSE for source MLP approx. vs. layer index of that MLP in the transformer. We see an
increasing trend for both MLPs and KANs, though MLPs exhibit some interesting behavior in the
middle layers. We measure every three layers for a total of 16 results for each of our two architectures.

block depth, where depth is varied. We observe increasing trends for both KANs and MLPs, though
we see patches where KANs outperform MLPs and vice versa. Of particular interest is the middle
section of the MLP trend; the KANs smoothly increase in final loss with depth, but for the middle
layers, MLPs reach the same low loss regime that they achieved for the early layers, on the order of
1 x 10~2. We include the loss curves for each of the runs used to build ﬁgurein appendices [E|and [F
We notice the KAN training dynamics are consistent across layers — a steep drop in the early epochs
then decreasing returns until we eventually plateau, where the plateau point increases gradually with
layer depth. MLP layers 30 through 42 see a large loss spike early in training, likely falling in some
unlucky loss regime in the optimization landscape. That this happens for this contiguous chunk of
layers only might suggest they’re learning similar types of functions/features which are more difficult
to approximate; the behavior altogether might be mitigated in future experiments through better
hyperparameter tuning.

All runs here adopt the same hyperparameter suite we optimized for the first layer. The low MLP
losses of layers 18 through 27 in figure [3jmake us question if better hyperparameter tuning might be
the answer for all layers to perform just as well — but we see no success with hyperparameter tuning
over our highest loss layer, depth 45.

Intuitively, as transformer depth increases, we would expect the layers to be learning increasingly
nuanced and sensitive features, with represented functions growing more complex. It would make
sense, then, for the difficulty of the approximation task we tackle here to increase in turn, explaining
the upward trend in MSE loss that both architectures exhibit with depth. As a loose sanity check, we
plot the standard deviations of the pretrained GPT-2 MLP weights as a function of depth in appendix
[D] observing an increasing trend for the projection matrix of deeper MLPs, though we note this is
nothing conclusive.

Finally, we wish to get a sense for what 1 x 10~2 (or worse) MSE means in terms of the end-to-end
language model performance. In table [T|we show the results of substituting the MLP or KAN model
we trained to approximate a source MLP at some depth into pretrained GPT-2 and evaluate on some of
the datasets explored in the original GPT-2 paper. The base model results are below those originally
listed for all three datasets — as a reminder, we only evaluate on subsets of the test datasets, and the
authors do not list all the preprocessing steps they undertook for their evaluation — but we still get
enough of a signal to understand the language model’s sensitivity to our approximation error.

WMT14 FR-EN | CNN/DailyMail | LAMBADA
BLEU ROUGE-AVG ACC
BASE 0.0842 0.0694 0.322
MLPO 0.0000 0.0166 0.320
KANO 0.0000 0.0413 0.334
MLP47 0.0776 0.0676 0.318
KAN47 0.0818 0.0698 0.324

Table 1: Language metrics post MLP substitution.

We observe the final word prediction of LAMBADA is robust to the substitution, with base model
performance preserved for both KAN- and MLP-based subs. The stronger performance of this dataset
is not surprising given it is close to the next token prediction that these models were trained on,
LAMBADA was formed using BookCorpus as a source, and for highly confident predictions in the
base model, small perturbations due to approximation loss are not enough to offset the confidence in
the next token. CNN/DailyMail and WMT 14 FR-EN are more complex, requiring longer sequences
of concentrated generations. We see that when we substitute the first layer MLP — which perhaps
tracks critical, lower-level features in the text, and where approximation loss is more costly, cascading
throughout the rest of the computation — the ROUGE-AVG (average of ROUGE-1,2,L.) and BLEU
scores see significant degradation. Qualitatively, we see repeated sequences pop up more frequently
(e.g., "the the the ...") and a decrease in relevance even for less repetitive generations. Clearly
the accuracy of our source MLP approximations for early transformer layers is insufficient for
maintaining good performance; on the flip side, despite the order of magnitude higher loss observed
in the approximation of the deepest transformer layers (6 x 10! vs. 1 x 10~ for early layers),
performance is preserved.

7 Conclusion

Overall we find that KANs are a poor candidate for MLP distillation in transformer-based language
models compared to simply smaller MLPs. They are, however, capable of learning the complex
distributions of natural language at scale, especially for lower model dimensionality. KANs struggle
more with approximating later layers in the transformer, though we find MLPs may share this
weakness — the more nuanced, sensitive features deeper in the model are just harder to learn. This
work is limited in terms of the scales of data and model sizes explored; future work could validate
KANs on much larger models, like Llama-2, which has a higher model dimensionality, and more
diverse datasets. Future work could also experiment with pretraining language models from scratch,
ablating between KANs and MLPs in the transformer layers.

8 Ethics Statement

The uber goal of this project was reducing the number of parameters needed for language modeling
through the introduction of KAN-based distillation. Had the results been favorable and we achieved
such a reduction, this would have posed ethical concerns in making advanced models more freely
available; they could be leveraged more easily by bad actors for malicious use cases such as generating
spam or facilitating scams. A mitigation strategy to reduce the availability might be deploying any
distilled models behind closed endpoints in walled garden ecosystems, where we could control and
filter model outputs with techniques like prompt rewriting and post-generation safety classifiers. A
second concern would be if any distillation, even if done through MLPs as concluded in this work,
undoes any safety alignment previously executed on the model. This safety reversal could allow
toxic, biased, sexist, or otherwise unsafe responses to be generated by the model to the detriment of
the downstream user or application. To fix this, we can simply reapply model alignment techniques,
such as the post-training model interventions of PPO-based RLHF and/or DPO on any models after
distillation.

References

Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?| In Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc.

Blealton. 2024. efficient-kan. https://github.com/Blealtan/efficient-kan

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia,
and Ales§ Tamchyna. 2014. Findings of the 2014 workshop on statistical machine translation. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12-58, Baltimore,
Maryland, USA. Association for Computational Linguistics.

Jirgen Braun and Michael Griebel. 2009. On a constructive proof of kolmogorov’s superposition
theorem. Constructive Approximation, 30:653-675.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.

Alexander B. Givental, Boris A. Khesin, Jerrold E. Marsden, Alexander N. Varchenko, Victor A.
Vassiliev, Oleg Ya. Viro, and Vladimir M. Zakalyukin, editors. 2009. On the representation of|
functions of several variables as a superposition of functions of a smaller number of variables.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network!

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359-366.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Distilling step-by-step! outperforming
larger language models with less training data and smaller model sizes,

Ziyao Li. 2024. Kolmogorov-arnold networks are radial basis function networks,

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacié,
Thomas Y. Hou, and Max Tegmark. 2024. Kan: Kolmogorov-arnold networks.

Meta. 2024. Introducing meta llama 3. https://ai.meta.com/blog/meta-1lama-3/. Accessed:
2024-06-06.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre, and Bing Xiang.
2016. |Abstractive text summarization using sequence-to-sequence rnns and beyond.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon

https://proceedings.neurips.cc/paper_files/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf
https://github.com/Blealtan/efficient-kan
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.1007/s00365-009-9054-2
https://doi.org/10.1007/s00365-009-9054-2
http://arxiv.org/abs/2005.14165
https://doi.org/10.1007/978-3-642-01742-1_5
https://doi.org/10.1007/978-3-642-01742-1_5
http://arxiv.org/abs/1503.02531
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/2305.02301
http://arxiv.org/abs/2305.02301
http://arxiv.org/abs/2405.06721
http://arxiv.org/abs/2404.19756
https://ai.meta.com/blog/meta-llama-3/
http://arxiv.org/abs/1602.06023

Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, L.ukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. 2024. Gpt-4 technical report.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. 2016. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1525—
1534, Berlin, Germany. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. 2019. Distilling
task-specific knowledge from bert into simple neural networks.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Huggingface’s transformers
State-of-the-art natural language processing.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In The IEEE International Conference on Computer Vision
(ICCV).

http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

A BookCorpus Distribution

Distribution of Sequence Lengths in Train Set
4000 4 3939

3500 A

3000 +

2500 A

2000 4

Count

1500 ~

1000 ~

52 25 9 4 3
T T

T
0 20 40 60 80 100
Sequence Length

Figure 4: Distribution of BookCorpus example sequence lengths over random 10k subsample.

10

B Epoch horizon for sample MLP, KAN runs

MLP D=6400 LR=1e-3 10k/2k BS512 Sched=0.95

— train
va

0.10 A

0.08 -

MSE

0.06

0.04 4

0.02 4

0 10 20 30 40 50
Epoch

Figure 5: Sample MLP training run metrics over 50 epoch horizon. MLP has dropout p=0.1, which is
responsible for the delta between train and val metrics. We can see that by the 50 epoch mark we
have plateaued.

FastKAN-b 1600-90-1600 LR=1e-3 45k5k Reg=0 Sched=0.95 B5512

— train

0.20 val

0.18 A

0.16 -

0.14

MSE

0.12 A

0.10 A

0.08 | Th—

Epoch

Figure 6: Sample KAN training run metrics over 50 epoch horizon. We do each validation pass
and corresponding metric calculation after training on all minibatches of data for the given epoch,
whereas the training metric is accumulated over each minibatch in the epoch and averaged at the end.
This is why the validation set appears to do better in the early epochs, though the benefit disappears
as we train for longer and start to slightly overfit. Here too we see a plateau by the 50 epoch mark.

11

C Impacts of Subsample Size

MSE vs. # Training Examples

0.020

0.019

0.018

0.017

0.016

Final Val MSE

0.015 A

0.014

0.013 A

T T T T T T T T
10000 15000 20000 25000 30000 35000 40000 45000
Training Examples

Figure 7: As we increase the example count, our final loss continues to decrease — given BookCorpus
has more than 70,000,000 examples, it is likely we could have pushed the MSE down further had we
taken a larger subsample, but we found this order of magnitude to be sufficient for our exploration.

D MLP Weight Layer-wise Stats

GPT2 MLP o per Layer

0.055 1 — c_fcstds
c_proj stds
0.050 4
0.045 4
b=l
=t
wn
o
)
2 0.040 _//
= I'd >
0.035 4
0.030 4
T T T T T
0 10 20 30 40

Layer Idx

Figure 8: We see the standard deviation of the c_fc (1600, 6400)-shape expansion matrix is mostly
consistent across layers, save for a slight uptick towards the end. The standard deviation of the c¢_proj
(6400, 1600)-shape projection matrix however does increase with depth, perhaps indicative of the
increasingly nuanced and higher level features we may be learning deeper in the model.

12

E MLP approx. by MLP - Depth Scaling Curves

MSE

MSE

0175

0.150

0.125

0.100

0.075

0.050

0.025

MLP 0 Retrain

— train
val
o 10 20 30 40 50
Epach
MLP 6 Retrain
— train
val
o 10 20 30 40 50
Epoch
MLP 12 Retrain
— train
val
o 10 20 30 40 50
Epoch
MLP 18 Retrain
— train
val
o 10 20 30 40 50

Epoch

MLP 3 Retrain

0.040
0.035

0.030 1
w

Ms|

0.025 4

0.020 4

0.015 4

— ftrain
val

o4

Epoch

MLP 9 Retrain

1.6

1.4

1.2

1.0

0.6 1

0.4

0.2+

— ftrain

o4

Epoch

MLP 15 Retrain

0.30 4

0.25 1

0.20 4

MSE

0.15 1

0.10 4

0.05 4

— ftrain

o4

Epoch

MLP 21 Retrain

— train

o4

Epoch

Figure 9: Training curves for MLP-based MLP approximation over varied depths.

13

0.200
0.175
0150
0125

w

£ 0100
0.075
0,050

0.025

35
3.0

25

MSE

MLP 24 Retrain

— train
\ﬁ

Epoch

MLP 30 Retrain

— train
L

Epach

MLP 42 Retrain

Epach

MSE

MLP 27 Retrain

025 — train
val
0.20
0.15 4
0.10 4
0.05 1
0.00
0 10 20 30 40 50
Epoch
MLP 33 Retrain
— train
74 val
64
5
g4
b3
3
2
14
e
o
0 10 20 30 40 50
Epoch
MLP 39 Retrain
— train
51 val
44
w 34
&
b3
2
14
\\/
0 10 20 30 40 50
Epoch
MLP 45 Retrain
54
— train
val
ad
3
w
I
b3
2
14
0 10 20 30 40 50
Epoch

Figure 10: Training curves for MLP-based MLP approximation over varied depths.

14

F MLP approx. by KAN - Depth Scaling Curves

MSE

MSE

KAN Approx. of MLPO

— train
val

Epoch

KAN Approx. of MLP6

— train
val

Epoch

KAN Approx. of MLP12

— train
val

Epoch

KAN Approx. of MLP18

— train
val

Epoch

MSE

KAN Approx. of MLP3

0.30 4

0.259

0.204

0.10

0.05 4

— ftrain
val

Epoch

KAN Approx. of MLP9

0.7 4

0.6 q

0.51

— ftrain
val

Epoch

KAN Approx. of MLP15

0.45

0.40 4

0.35 1

0.30 9

0.254

0.20 4

0.15

0.10

— ftrain
val

Epoch

KAN Approx. of MLP21

0.45 4

0.40 4

0.35 1

0.30 4

0.259

0.20 1

0.15

— train
val

Epoch

Figure 11: Training curves for KAN-based MLP approximation over varied depths.

15

KAN Approx. of MLP24

050 — train
val
0.45
0.40
w 035
I
=
0.30
025
0.20
0.15 L — T v r r T
[10 20 30 40 50
Epoch
KAN Approx. of MLP30
— train
val
0.6
05
w
@
=
0.4
03
[10 20 30 40 50
Epoch
KAN Approx. of MLP36
08 — train
val
0.7
0.6
w
@
=
05
0.4
031 — T v r r T
[10 20 30 40 50
Epoch
KAN Approx. of MLP42
12 — train
val
11
10
0.9
I
2os
0.7
0.6
05
04
[10 20 30 40 50
Epoch

KAN Approx. of MLP27

0.60 4

0.55 1

0.50 1

0.45 1

0.35 4

0.30 4

025

0.204

A

— train
val

10 20 30 40 50
Epoch

KAN Approx. of MLP33

0.7

0.6 4

MSE

0.5

0.4 4

034

_ A

— ftrain
val

10 20 30 40 50
Epoch

KAN Approx. of MLP39

0.9 4

0.8 1

0.7 4

MSE

0.6 q

051

0.4+

L

— train
val

Epoch

KAN Approx. of MLP45

1.00 4

0.75 1

0.50 4

— train
val

Epoch

Figure 12: Training curves for KAN-based MLP approximation over varied depths.

16

	Key Information to include
	Introduction
	Related Work
	Approach
	Dataset Generation
	Baselines
	Setup

	Experiments
	Evaluation method
	Data
	Experimental details

	Results
	KAN-based Distillation
	Layer Depth Scaling

	Conclusion
	Ethics Statement
	BookCorpus Distribution
	Epoch horizon for sample MLP, KAN runs
	Impacts of Subsample Size
	MLP Weight Layer-wise Stats
	MLP approx. by MLP – Depth Scaling Curves
	MLP approx. by KAN – Depth Scaling Curves

