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Abstract

This project explores novel approaches to improving the multitask performance of BERT on
tasks like sentiment classification, paraphrase detection and semantic textual similarity (STS).
We first experiment with various training procedures including sequential training, round-
robin training, annealed sampling, and square-root sampling. Additionally, we experiment
with architectural changes in our output layer in order to improve the final performance.
Lastly, we experiment with various loss functions such as the baseline cross entropy, MSE,
and SimCSE, a contrastive learning approach. While improving the baseline model, we
selected the most promising procedures, from each category (training, architecture, loss)
to combine into a final model that significantly outperforms the baseline. We achieve an
average final dev set performance of 74.3%.

1 Introduction

The broad research goal of engineering powerful natural language systems is important for a variety of
downstream tasks. In 2018, Devlin et. al made a significant step in this field in their paper that introduced
Bidirectional Encoder Representations from Transformers (BERT) as a powerful baseline model that could be
easily fine-tuned for a myriad of downstream tasks Devlin et al. (2019). With state-of-the-art results on many
of the key natural language benchmarks (i.e. GLUE, Multi-NLI, SQuAD, etc.), it served as a cornerstone for
natural language processing research in the coming years.

Although serving as a powerful baseline model, many papers have since come out proposing novel
methods to improve the baseline BERT architecture on natural language inference (NLI) tasks. In our paper,
we seek to explore these methods, and extend their applicability to a multi-task NLI setting. We experiment
with methods like multi-task learning methods, gradient surgery, various loss functions, contrastive learning,
and ensembling, yielding significant improvements over the baseline BERT architecture.

2 Related Work

More recently, newer papers have been published, proposing novel methods that build on Devlin et. al’s
work and expanding the capabilities of the baseline BERT model. In 2021, Gao et. al published SimCSE, a
constrastive learning framework for learning more robust sentence embeddings Gao et al. (2021). Gao et. al’s
paper demonstrated that their SimCSE framework generated a significant improvement in natural language
inference tasks over the baseline BERT model Gao et al. (2021). The core idea behind contrastive learning is
given an anchor (the original example), a positive example (similar in the context of the task) and a negative
example (not similar in the context of the task), we learn a contrastive representation in the embedding space.
This pushes positive examples closer together while pushing negative examples farther apart, allowing for
better downstream results in natural language inference tasks.
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In 2020, Yu et. al, published another key paper that improved BERT’s ability to learn in a multi-
task setting Yu et al. (2020). Through gradient surgery, Yu et. al proposed a method that avoids conflicting
gradient updates while training for multiple tasks Yu et al. (2020). This is important as oftentimes when
learning in a multi-task environment, there may exist tasks that are “conflicting” meaning that an improvement
in performance on one task may erode the performance for another task Yu et al. (2020). Gradient surgery
solves this problem by projecting one task’s gradient onto a normal plane of another conflicting task’s gradient,
allowing substantial improvements in the results of multi-task learning Yu et al. (2020). Stickland & Murray
also published a paper that highlighted the importance that the training loop and sampling procedure have
on downstream multitask learning capability Stickland and Murray (2019). Jiang et. al also introduced
Smoothness-inducing (SMART) regularization, a method incorporates the minimization of the difference in
output between similar inputs as part of the loss function, in order to reduce over fitting Jiang et al. (2020).

3 Approach

Our goal is to effectively train a multi-task BERT classification model to learn on multiple tasks. A naive
approach to multi-task learning would be sequentially training our model on each task (i.e. sentiment
classification, paraphrase detection, semantic textual similarity).

We will first fine-tune a baseline BERT model on each task using the above datasets using task-wise sequential
training. To further refine our baseline BERT model, we can use round robin training loop which will allow the
model to simultaneously learn various tasks. To deal with conflicting gradients in multi-task learning, we’ll use
a gradient surgery. For gradient surgery, we used the open-source Pytorch-PCGrad package Yu et al. (2020).

We’ll then experiment with various training loop procedures (i.e. annealed sampling, round-robin, proportional
sampling, etc.). Next, we’ll test the efficacy of various training loss functions (i.e. SimCSE, MSE, cross
entropy). Lastly, we’ll evaluate the efficacy of SMART regularization.

All methods were originally coded outside of gradient surgery.

3.1 Baseline

To evaluate the efficacy of our final model, we used a simple BERT multitask model to encode our input with
an architecture that is described in the paper “Attention is all you need” (Vaswani et al., 2018) and depicted in
( Fig. 1) Vaswani et al. (2017). We then built different task specific layers on top of the base BERT model for
our baseline, which we display in the appendix: Fig. 2), Fig. 3), Fig. 4).

To train our baseline model, we truncated our datasets to the length of the smallest dataset to get uniform
dataset sizes and used task wise sequential training, which would train all batches in sentiment classification
first, then all batches in paraphrase detection, then all batches in similarity score. This will serve as our point
of iteration, allowing us to evaluate how our model additions alter or improve the final model’s results.

3.2 Round Robin

To improve from our baseline approach, we first wanted to address the issue of “unlearning” the performance
from old tasks when training on the new task and over fitting on later tasks compared to earlier tasks. Therefore,
we employed a round robin training procedure, which allowed the model to learn and update the gradients
of all three tasks in each step. In each training step, we sample a batch from each of the three datasets and
sequentially train the model on each batch, optimizing the gradients of all three tasks. This is advantageous for
multi-task learning as we are aiming to optimize a joint-optimization problem between all three tasks.

3.2.1 Truncated Triple-Batch Training

To solve the issues of over fitting on smaller datasets, we truncated all the datasets to the size of the smallest
dataset, the SemEval dataset. While this approach meant that we did not use a large portion of our data for the
Quora dataset, it was advantageous because no training example was seen more than once per epoch by the
model, so it could avoid over fitting on smaller datasets.

3.2.2 Gradient Surgery

Although a baseline loss function for round robin training could be the sum of the loss functions for each task,
conflicting gradients can make this approach sub-optimal. To address this, we implemented gradient surgery,
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which projects conflicting gradients onto the normal plane of other gradients to reduce inconsistent gradient
updates in the process of optimizing multiple loss functions. This allows us to more efficiently optimize the
parameters of our models to perform well in the multi-task setting ( Fig. 6).

3.3 Sampling Methods

In addition to round robin training procedure, we tested 3 different sampling methods to train our model:
Proportional Sampling, Annealed Sampling, and Square Root Sampling. These sampling methods aim to
improve off round robin by preventing the over fitting of smaller datasets. For all three sampling methods, we
took 2400 training steps per epoch, as proposed arbitrarily by Stickland and Murray (2019).

3.3.1 Proportional Sampling

Proportional sampling samples a batch from each task i with a probability proportional to the size of the
dataset, namely:

pi ∝ Ni (1)

where Ni is the number of training for task i.

3.3.2 Square Root Sampling

Square root sampling samples a batch from each task i with a probability proportional to the square root of the
size of the dataset, namely:

pi ∝ N
1
2
i (2)

where Ni is the number of training for task i. Square root sampling aims to help minimize interference in the
training process, which occurs when one task gets sampled too many times in a row and the performance of
other tasks drops. By using the square root probabilities, we reduce the disparity of sampling probabilities
between the larger and smaller datasets, which we hypothesized would be helpful, given the SST training
dataset is over 45x larger than the STS dataset.

3.3.3 Annealed Sampling

Annealed sampling samples a batch from each task i with a probability proportional to:

pi ∝ Nα
i (3)

where Ni is the number of training for task i. Following Stickland and Murray (2019), we set α to be:

α = 1− 0.8(
e− 1

E − 1
) (4)

where e is the current epoch of training we are on and E is the total number of epochs we are training for. As
seen in the equation, annealed sampling starts off with sampling from a distribution similar to proportional
sampling, but as the training progresses the sampling between tasks becomes more evenly split. Stickland and
Murray (2019) noticed that it became even more important to avoid interference later in the training process,
which is why sampling from a more evenly split distribution among tasks would be beneficial.

3.4 Loss functions

In training our model, we experimented with various loss functions that could improve our performance.
Initially, we tried cross entropy across all tasks and this served as our baseline. However, since STS is graded
based on the logits’ similarity with the ground truth score, we hypothesized that an MSE loss could outperform
cross entropy for the STS task.

3.4.1 SimCSE Loss

SimCSE leverages a contrastive training procedure to learn more robust embeddings that are easily separable in
the embedding space. In our paper, we leveraged unsupervised SimCSE in order as a pre-training methodology
before fine-tuning the model again afterward. In unsupervised SimCSE, for each training example i, we run
two forward passes from the MultitaskBERT to create two embeddings, vi and v′i where vi and v′i have slight
variations from dropout noise. We then use the SimCSE objective function to maximize the similarity between
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these two examples and minimize the similarity across the other training examples. We run this method for 5
epochs, observing monotonically decreasing loss at each epoch.

ℓi = − log
esim(h

zi
i ,h

z′i
i )/τ∑N

j=1 e
sim(h

zi
i ,h

z′
j

j )/τ

(5)

3.5 Architecture

Although our architecture for predicting sentiment stayed the same throughout our research, we explored
other alternative architectures from our baseline model for paraphrase detection and sentence similarity. For
these two tasks, we tried concatenating the input ids and attention masks together before passing them into the
BERT model and then passing that output through a linear layer as depicted in (Fig. 5). Throughout our paper,
we refer to our baseline architecture as old and our modified architecture as new.

3.6 Smoothness-Inducing Adversarial Regularization

To prevent our model over fitting on training data, we also implemented Smoothness-Inducing Adversarial
Regularization (SMART). As proposed by Jiang et al. (2020), SMART aims to add a regularization term to
the loss function as such:

min
θ

F(θ) = L(θ) + λsRs(θ), (6)

where L(θ) is the original loss function, λs is the regularization coefficient and

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ)), (7)

For classification tasks such as the sentiment prediction and paraphrase detection, Jiang et al. (2020) proposed
ℓs to be symmetric KL divergence.

ℓs(P,Q) = DKL(P ∥ Q) +DKL(Q ∥ P ); (8)

For regression tasks, such as similarity score, Jiang et al. (2020) proposed ℓs to be squared loss, so we used
mean squared error.

By minimizing the loss between very similar inputs as part of our loss functions, we are penalizing
drastic changes in the outputs for small changes in inputs, which prevents over fitting. Given there was a
bigger discrepancy between training loss and test loss for sentiment compared to paraphrase detection and
similarity score, we implemented SMART with a higher lambda for sentiment than the other two tasks.

4 Experiments

4.1 Data

For the sentiment classification task, we fine-tuned our pre-trained BERT model on the Stanford Sentiment
Treebank dataset (11,855 total examples | 8,544 train examples | 1,101 dev examples | 2,210 test examples),
which consists of labeled, multi-class sentiment analysis examples. In order to fine-tune our model on
paraphrase detection examples, we also used the provided Quora dataset (404,298 total examples | 283,010
train examples | 40,439 dev examples | 80,859 test examples) consisting of question pairs. Lastly, for the
semantic textual similarity task, we fine-tuned our model on the SemEval STS Benchmark dataset (8,628 total
examples | 6,040 train examples | 863 dev examples | 1,725 test examples) consisting of sentence pairs.

4.2 Evaluation method

In evaluating the efficacy of our methods, we used a variety of different evaluation metrics. For sentiment
classification and paraphrase detection, we used classification metrics such as accuracy, precision, recall, and
F-1 score. These gave us a holistic understanding of our model’s strengths and weaknesses. For STS we
evaluated our model’s outputs using Pearson’s correlation.
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4.3 Experimental details

To fine tune the entire model, we used of α = 1× 10−5 with a batch size of 8. We trained everything on a
NVIDIA Tesla T4 GPU. The cumulative training time for the full model ranged from 6 hours for a baseline to
8 hours for SimCSE. For our sampling taining procedures, we used 2400 steps per epoch.

4.4 Results

4.4.1 Round Robin Results

Table 1 shows how round robin improves on the baseline model, which was sequential task training on
truncated dataset. Grad means gradient surgery was applied on this layer.

Table 1: Round Robin Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

Baseline 0.469 0.713 0.540 0.574
RR (Truncated) 0.486 0.717 0.559 0.587
RR (Full) 0.476 0.706 0.577 0.586
RR (Trunc + Grad) 0.496 0.728 0.572 0.599

Table 1 shows that round robin improved off the sequential task training, as average accuracy improved from
0.574 to 0.587. It also shows that there was minimal difference between truncating the dataset (0.587) and
running round robin all the way through the longest dataset (0.586). Finally, it shows that gradient surgery
was able to improve the model from 0.587 to 0.599.

4.4.2 Sampling Methods Results

All tests in Table 2 were run on the baseline architecture, with the only variable being how we chose which
batches would be trained on.

Table 2: Baseline Sampling Methods Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

RR (Trunc + Grad) 0.496 0.728 0.572 0.599
Proportional 0.460 0.808 0.515 0.594
Annealed 0.480 0.804 0.581 0.622
Square Root 0.500 0.810 0.582 0.631

Table 2 shows that proportional sampling performed the worst as 0.594 was the lowest average accuracy of the
four tests. Meanwhile, both annealed sampling (0.622) and square root sampling (0.631) did better than the
best round robin test (0.599).

4.4.3 Loss Function Results

Table 3 tests cross entropy (CE) and mean square error (MSE) on the similarity score task. We tried these
three tests on the two best sampling methods from table 2. All tests in table 3 still use the baseline model
architecture.

Table 3: Loss Functions Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

SQRT + CE 0.500 0.810 0.582 0.631
SQRT + MSE 0.480 0.783 0.437 0.567
Annealed + CE 0.480 0.804 0.581 0.622
Annealed + MSE 0.458 0.786 0.412 0.522
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Table 3 shows that for both annealed sampling and square root sampling, cross entropy loss outperformed
the mean squared error for the similarity task loss function as our average accuracies were higher for both.
This went against we expected, as we thought that switching to MSE for a regression task would improve
performance.

4.4.4 Model Architecture Results

Table 4 test our differing model architectures for the paraphrase detection and similarity score tasks. All tests
in this table used all cross entropy loss functions.

Table 4: Model Architecture Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

SQRT + Old 0.500 0.810 0.582 0.631
SQRT + New 0.481 0.861 0.795 0.712
Annealed + Old 0.480 0.804 0.581 0.622
Annealed + New 0.510 0.873 0.770 0.718

The main takeway from table 4 was that concatenating the input ids before passing them through BERT
significantly improved average accuracy. We can see this as the square root sampling with this architecture
(0.712) outperformed the square root sampling architecture (0.632) by 8 percent. Similarly, the annealed
sampling with this architecture (0.718) outperformed the square root sampling architecture (0.622) by 9.6
percent.

4.4.5 SimCSE Pretraining Results

Table 5 compares our baseline architectures (new, old) with square root sampling with and without SimCSE.

Table 5: SimCSE Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

Baseline Old + SQRT 0.500 0.810 0.582 0.631
SimCSE Old + SQRT 0.507 0.817 0.710 0.678
Baseline New + SQRT 0.481 0.861 0.795 0.712
SimCSE New + SQRT 0.492 0.867 0.801 0.720

We find that SimCSE boosts performance by up to 4.6% when compared to the baselines.

4.4.6 SMART Results

Table 6 test varying lambda values on the best model from table 4. Given sentiment exhibited the biggest
discrepancies between train loss and test loss, we made those lambda values higher than the other two tasks i.e
λ = 3, 1, 1 means a λ value of 3 for sentiment and 1 for the other two tasks.

Table 6: SMART Table
Sentiment Acc Paraphrase Acc Similarity Corr Avg Acc

SQRT, λ = 0, 0, 0 0.481 0.861 0.795 0.712
SQRT, λ = 3, 1, 1 0.522 0.874 0.815 0.737
SQRT, λ = 5, 3, 3 0.522 0.877 0.830 0.743
Ann, λ = 0, 0, 0 0.510 0.873 0.770 0.718
Ann, λ = 3, 1, 1 0.511 0.876 0.806 0.731
Ann, λ = 5, 3, 3 0.509 0.878 0.823 0.737
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Table 6 shows that adding regularization to our model can improve performance by preventing over fitting.
From this table, we can see that increasing lambda to 3 increased our performance in all 3 tasks, but when
we changed lambda to 5 for sentiment analysis, the accuracy stayed at 0.522 for sqrt and went down from
0.511 to 0.509 for annealed. The bolded model is our final model with the best performance, which we have
provided in the appendix (Table. 8).

5 Analysis

5.1 Sampling Method Analysis

Through our tests, we were able to come to the conclusion that square root sampling worked better than
proportional sampling, the best round robin test, and annealed sampling. This is likely due to the training
datasets we were using, which had sizes of 8, 544, 280, 010, and 6, 040. The results exemplify how square
root sampling is able to strike a balance between not sampling with too much discrepancies and not over fitting
on smaller datasets. We can see this because it has the biggest improvements on proportional sampling in
sentiment accuracy and similarity correlation, which makes sense as those are the two smallest datasets, which
get under sampled in proportional sampling. Meanwhile, square root sampling has the largest improvements
on the round robin training on paraphrase accuracy because it still samples paraphrase examples more than the
other tasks, which make sense, as that is the biggest dataset. Finally, it is interesting to note that while square
root sampling had the biggest improvements in these areas, it beat round robin and proportional sampling in
all three tasks.

5.2 Loss Function Analysis

The first additional loss function that we experimented with outside of cross entropy was MSE. We thought
that for the regression task of STS where we were graded on Pearson’s correlation, it could make more sense
to use a loss function more native to regression analysis like MSE. Despite this intuition, our results were
worse when training a model with MSE loss on the STS task. These results are reported in Table 3.

The major contribution in our loss function analysis was our implementation of unsupervised Sim-
CSE from scratch. Here, we trained over the training examples using a contrastive SimCSE objective. We
found that pre-training our models with the SimCSE objective yielded improvements in model performance.
This is likely due to the SimCSE objective segmenting the embedding space into more separable classes,
pushing together the vi and v′i while separating vi and vj , resulting in better downstream multitask
performance. By pre-training with SimCSE and then training again using square-root sampling (our best
performing training method), we are able to learn a more robust representation of the embeddings, resulting in
better downstream multitask classificant accuracy.

5.3 Model Architecture Analysis

It was noteworthy that the most drastic improvement we made in the model was changing the architecture of
the similarity score task and paraphrase detection. Once we passed the concatenated input ids and attention
masks into BERT instead of passing them in separate and concatenating them after, our model improved a
lot, especially in similarity score task. This is likely due to the fact that we were able to use the power of the
BERT model to start learning relationships between the two inputs rather than solely relying on a linear layer
after passing them individually through the BERT model to pick up on these complex relationships. This
makes sense for why the similarity task would improve the most, as that is more complex than the binary
paraphrase task. Therefore, while this change in architecture improved the paraphrase detection task, it’s
ability to leverage the BERT model to pickup complex relationships between the words was most heavily seen
in the sentiment correlation improvements.

5.4 SMART Analysis

Given the discrepancy between the training and testing accuracies for sentiment was higher than the other
two tasks, we had anticipated to see the most improvement in sentiment prediction. However, even with
higher lambda values, it did not improve much more than the other two tasks. Additionally, it was interesting
that annealed sampling performed better in the absence of SMART, but square root sampling performed
better with SMART. Finally, switching the lambda value from 3 to 5 for the sentiment task did not show any
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improvements, which is noteworthy because the sentiment still was over fitting, as the training accuracy was
above 0.75. Going forward, exploring other options to reduce over fitting could be beneficial for the sentiment
task, such using datasets with more training data.

5.5 Final Model Analysis

We elected to evaluate our final model using SST since our final model struggled the most on SST compared to
the other tasks. Despite solely looking at a few of the outputs, these will give us a rough idea of how our model
tends to overestimate/underestimate sentiment. Looking at the outputs for the final model, we can generally
see that the model’s score closely represents the label’s score. This is good as it indicates that our model’s
predictions are generally well-calibrated to the ground-truth answer distribution.
We found that generally the model can be confused by words such as "fun" causing it to over-inflate the
sentiment score from the actual value of 2 to 3 for the fourth example. It’s also possible that a similar thing is
occuring in the third example as the word "like" causes the model to inflate the score from an actual value of 1
to 3. Although upon further inspection, this example is quite hard, even for a human, to properly measure.

Table 7: Final Model Analysis on SST
Input Text Model Score Actual Score

It’s a lovely film with lovely performances by Buy and Accorsi 3 4
Enormously entertaining for moviegoers of any age 4 4
You won’t like Roger, but you will quickly recognize him 3 1
Makes even the claustrophobic on-board quarters seem fun 3 2

6 Conclusion

Throughout the course of this project, we experimented with a variety of methods in order to boost the baseline
performance of the multitask BERT model. We took four main approaches to boosting the performance
of our model: training loop methods, architectural improvements, varying the loss functions, and SMART
regularization. We then combined the best methods together to form our final model, resulting in a final
average accuracy of 0.743.

Despite these improvements, one potential limitation of our work is that we only experimented with
unsupervised SimCSE. In order to improve our results, we could use supervised SimCSE, allowing our model
to learn more nuanced differences between positive and negative training examples. Future research should
focus on implementing supervised SimCSE as a method to boost the improvement of the multitask BERT
model. Furthermore, we didn’t get a chance to experiment with ensembling or meta-learning methods that
could potentially improve the generalization, accuracy, and robustness of our final model. Additionally, we
can run more hyperparameter optimizations in order to go beyond the given hyperparameters of the model.

7 Ethics Statement

One major ethical concern is the potential for biased outputs, as these models may inherit and amplify biases
present in the training data, leading to unfair or discriminatory results. Additionally, as we saw through our
results, our model is not perfect, so there is a risk of the spread of misinformation. To mitigate these risks, it
is essential that the training data is as unbiased and representative as possible. To do this, we need to both
filter out any training examples that could reinforces biases and ensure that we have enough examples from
a diverse set of sub populations. To mitigate the risk of misinformation, it is important that we understand
the limitations of the model before using it in the real world. For example, if it is crucial that we achieve
100 percent accuracy on a sentiment task, then our model might not be sufficient for that use case. Finally,
continuous monitoring and evaluation of the models’ performance and impact on different populations are
crucial to address and solve any unintended consequences.
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A Appendix (optional)

Figure 1: BERT Model Architecture
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Figure 2: Sentiment Prediction Architecture

Figure 3: Paraphrase Detection Baseline Architecture
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Figure 4: Sentence Similarity Baseline Architecture
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Figure 5: Unsupervised SimCSE visualization

Figure 6: Gradient surgery visualization

Figure 7: Unsupervised SimCSE visualization
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Figure 8: Paraphrase Detection and Sentence Similarity New Architecture

Table 8: SMART Table
Sentiment Paraphrase

Accuracy 0.522 0.877
Precision 0.532 0.532
Recall 0.498 0.878
F-1 Score 0.496 0.870
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