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Abstract

Gradient surgery is a valuable technique for improving performance on multi-task
learning (MTL). However, we observe that PCGrad may over-optimize on tasks
with more training data. We explore existing solutions towards improving MTL
with imbalanced data, and demonstrate that annealed sampling can improve the
performance of PCGrad. Then, we suggest a novel approach called Alternating
Round-Robin PCGrad (ARRP). We show that ARPP achieves comparable perfor-
mance to annealed sampling while providing a significant speedup. We suggest
AARP achieves this by balancing a task fairness objective with sufficient utilization
of training data.
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2 Introduction

Fine-tuning is a powerful framework for improving deep language models (LM) on subject-specific
tasks. One variant of fine-tuning is multi-task learning (MTL), where a LM is optimized for several
downstream tasks simultaneously. For the CS224N default project, we are interested in fine-tuning a
custom BERT implementation (Devlin et al. (2019)) on three downstream natural language processing
(NLP) tasks: sentiment analysis, paraphrase detection, and sentence similarity.

One approach towards MTL is to fine-tune the LM on all tasks jointly. This approach seeks to uncover
shared structures across tasks, enabling greater efficiency and improved performance compared to
optimizing tasks individually. However, optimizing multiple tasks concurrently is quite challenging,
sometimes resulting in lower overall performance and data efficiency than learning tasks separately
(Parisotto et al. (2016)).

One reason that MTL can lead to performance degradation is because different tasks often have
competing objectives, making them difficult to optimize jointly. One method to address this issue
is gradient-surgery, which manually adjusts the loss gradients to resolve conflicts between tasks.
Although gradient surgery is a powerful tool, it may over-optimize on tasks with more training data,
leading to performance degradation and unfairness between tasks. One technique to address this
problem is annealed sampling, which increases the representation of tasks with less data during
training.

Motivated by the desire to increase fairness in MTL, we suggest a novel approach called Round-Robin
(RR) PCGrad. We show that RR-PCGrad successfully improves fairness between objectives, at the
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expense of poor data utilization. To improve upon this method, we develop an extension called
Alternating Round-Robin PCGrad (ARRP). We show that ARRP is able to match the performance
benefit of annealed sampling, while providing a significant speedup. Given that we do not ensemble
other extensions with PCGrad, our performance validates improved gradient-surgery as a powerful
tool for MTL.

3 Related Work

3.1 Gradient Surgery

Yu et al. (2020) introduce gradient surgery, an approach designed to improve MTL by altering
conflicting gradients between tasks. Their method, named PCGrad, projects a task’s gradient onto the
normal plane of another task’s conflicting gradient. To motivate this approach, observe that MTL is
commonly performed on a joint loss:

Ltotal =
∑
k

Lk

where Lk is the loss for individual task k. They observe that it may be difficult to optimize model
parameters Θ through ∂L

∂Θ , since the gradient gi = ∂Li

∂Θ and gj =
∂Lj

∂Θ may point in contrasting
directions, causing the optimizer to stall when gtotal =

∂Ltotal
∂Θ ≈ 0. PCGrad applies the following

gradient surgery to improve performance:

gi ← gi −
gi · gj
∥gj∥2

gj

where gi and gj are gradients that optimize different loss functions Li and Lj of different tasks.
By projecting the gradient of tasks onto the normal plane of conflicting gradients, the destructive
interference between tasks in reduced.

Despite the utility of PCGrad for multi-task learning (MTL), it may suffer in scenarios with vastly
different dataset sizes. Observe that the vanilla approach to integrate PCGrad into an MTL training
loop is as follows: for each iteration, randomly sample a batch of data points, B, from the combined
training datasets

⋃
iDi (from each task, Ti). This sampling mechanism means that tasks with larger

datasets may be over-sampled, leading to them dominating over tasks with less available data.

3.2 Improving PCGrad for Data Imbalances

One strategy to mitigate task domination involves designing a more intelligent sampling scheme
for tasks with different amounts of data. Stickland and Murray (2019) propose the use of annealed
sampling for this purpose. In annealed sampling, the probability pi of selecting a batch of examples
from task i is proportional to Nα

i , where Ni represents the number of training examples in task i. We
employ the same definition for α as Stickland and Murray (2019):

α = 1− 0.8
e− 1

E − 1
where e denotes the current epoch and E denotes the total number of epochs. Intuitively, annealed
sampling biases the training towards tasks with larger datasets during the initial epochs, gradually
transitioning to a more equitable distribution across tasks as training progresses.

Another approaches towards increasing fairness in MTL for imbalanced data regimes include down-
sampling techniques He and Garcia (2009). While downsampling can mitigate task-specific bias, it
also reduces data utilization, which may lead to performance deterioration. One final approach is
gradient weighting techniques exist, which seek to manually adjust the importance of gradients for
different tasks Sener and Koltun (2019). GradNorm is an extension of this method, which seeks to
adjust the weights of different task gradients dynamically Chen et al. (2018).

4 Approach

4.1 Introducing RR-PCGrad

Recall that for every training iteration, Vanilla PCGrad will sample B batches from combined training
data of each task,

⋃
iDi (where Di denotes the training data of task Ti). We observe this sampling
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mechanism may lead to tasks with more data being preferred each training loop. To devise a more
fair PCGrad, we introduce a novel approach: Round-Robin PCGRad (RR-PCGrad).

The fundamental intervention proposed by RR-PCGrad is to redefine the sampling mechanism during
each training iteration to improve fairness. Specifically, we redefine our batch sample,B′, as:

⋃
i Bi,

where Bi refers to a batch from Ti. Intuitively, RR-Grad forces each task to contribute to the overall
MTL objective each iteration, increasing task-fairness despite data imbalances.

Besides increased fairness, RR-PCGrad also seeks to improve data efficiency. Notice that in vanilla
PCGrad, the sample batch B may consist of examples entirely from one task, which may not have
conflicting gradients. In such iterations, applying PCGrad samples may incur minimal benefit at the
expense of more computation time. In contrast, RR-PCGrad ensures that each task is represented,
allowing for more utility to be extracted from PCGrad each iteration. Below we introduce psuedocode
to highlight the major differences in these two approaches.

Algorithm 1 Vanilla PCGrad Loop
1: for T iterations do
2: Sample B batches from

⋃
iDi

3: Group data from each represented Ti
into Bi

4: Initialize losses as empty
5: for each Bi do
6: Do forward pass to obtain logits
7: Compute loss for task i
8: Append loss to losses
9: end for

10: Perform PCGrad on losses
11: Update model parameters
12: end for

Algorithm 2 Round-Robin PCGrad Loop
1: for T iterations do
2: for each task Ti do
3: Sample batch Bi
4: end for
5: Initialize losses as empty
6: for each Bi do
7: Do forward pass to obtain logits
8: Compute loss for task i
9: Append loss to losses

10: end for
11: Perform PCGrad on losses
12: Update model parameters
13: end for

Figure 1: Comparing Vanilla and RR-PCGrad algorithms

While we hypothesize that RR-PCGrad will allow for more democratic training, we also observe
a significant issue with this proposed approach. Namely, we observe that RR-PCGrad is now
bottlenecked by the smallest training set, mini |Di|. Unfortunately, this means that RR-PCGrad may
suffer from poor data-utilization for tasks with vastly more data. For the default project, we observe
the following sizes of training dataset and their relative utilization each training epoch under the
proposed RR-PCGrad scheme.

Table 1: Datasets and their respective sizes

Dataset Training Examples Dev Examples Test Examples % Utilized during each Epoch
STS 6,040 863 1,725 100.0%
SST 8,544 1,101 2,210 70.7%
QQP 283,010 40,429 80,859 2.1%

While shuffling each epoch helps increase the utilization of training data for such tasks, this ta-
ble suggest that our largest training dataset (QQP) will experience poor data utilization, and as a
consequence, may experience performance degradation. This observation motivates the following
extension to RR-PCGrad to improve data utilization.

4.2 AAPR: Overcoming the Data Bottleneck of RR-PCGrad

To overcome the data bottleneck introduced in RR-PCGrad, we introduce the following novel
approach: Alternating Round-Robin PCGrad (ARRP). ARRP aims to overcome this data bottleneck
introduced by alternating between RR-PGrad and individually fine-tuning tasks with large amounts
of training data every epoch. This algorithm is motivated by the following observations.
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(i) Additional task-specific fine-tuning will increase data utilization of the task with the largest
amount of training data. This helps alleviate the bottleneck introduced by RR-PGrad.

(ii) RR-PCGrad should correct for task-specific overfitting introduced by fine-tuning on the data
dominant task, providing an overall normalizing effect.

To illustrate this approach, we provide the following psuedocode.

Algorithm 3 ARRP
1: Selected task with most training data, t
2: for E epochs do
3: Do RR-PCGrad on all tasks
4: Compute remaining batches in t as B′

5: Sample B batches from B′

6: Freeze select model params, Θ′

7: Initialize loss penalty as λ
8: for B batches do
9: Do forward pass for logits

10: Compute loss on t
11: loss← λ× loss
12: Perform backward pass
13: Update unfrozen params, Θ \Θ′

14: end for

Intuitively, AARP seeks to balance the fairness introduced by RR-PCGrad, while still maintaining
sufficient data utilization for the tasks with most data. AARP introduces three hyperparameters.

• λ corresponds to the penalty applied to the task-specific weight. This is inspired by Gradient-
weighting approaches Sener and Koltun (2019). Intuitively, we want to penalize the task-
specific loss so it does not dominate the overall MTL objective.

• B corresponds to the number of batches used for fine-tuning.

• Θ′ corresponds to which set of parameters to freeze during the task-specific fine-tuning.

5 Experiments

Given these approaches, we now proceed with fine-tuning BERT for our three downstream tasks.
All the code used to run experiments is available at the following repository 1 (which is private to
maintain the Stanford Honor Code, but permission is available upon request).

5.1 Data

We use the following datasets for each task:

(i) For sentiment classification, we use the Stanford Sentiment Treebank (SST) dataset 2 SST
consists of sentences extracted from movie reviews, where each sentence has a label of
negative, somewhat negative, neutral, somewhat positive, or positive.

(ii) For paraphrase detection, we use the Quora Question Pairs (QQP) dataset 3 , which consists
of questions pairs with labels indicating whether they are paraphrases of one another.

(iii) For semantic textual similarity, we use the SemEval STS Benchmark dataset 4, which
consists of sentence pairs of varying similarity on a scale of 0 (not at all related) to 5
(equivalent meaning).

1https://github.com/giancarloricci/CS224N)
2https://nlp.stanford.edu/sentiment/treebank.html
3https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
4https://aclanthology.org/S13-1004.pdf
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5.2 Evaluation method

For SST and QQP, we measure the model’s performance using accuracy between the true and
predicted labels. For STS, we use the Pearson correlation coefficient, which measures the linear
correlation between the true and predicted similarity values.

5.3 Experiment 1: Establishing Baselines

We first establish a performance baseline of the existing methods. We train for 10 epochs with
learning rate 1e-5. We denote Vanilla PCRad as V-PCGrad, PCGread with Annealed Sampling as
A-PCGrad. B corresponds to the number of batches sampled each iteration (note that RR-PCGrad
is contrained to be the minimum training size, 6040). We report the wall-clock time on a T4 GPU
deployed on Google Colab. Additionally, we use Tseng (2020) as a reference implementation for
PCGRad. We observe the following results.

Table 2: Establishing Baselines for PCGrad

Method Sentiment Paraphrase Similarity Dev Acc Time / Epoch (Minutes)
RR-PCGrad, B = 6040 0.528 0.829 0.869 0.763 7.93
A-PCGrad, B = 16000 0.512 0.874 0.858 0.774 18.1
A-PCGrad, B = 56000 0.535 0.890 0.865 0.785 65.8
A-PCGrad, B = 80000 0.516 0.895 0.862 0.781 93.1

V-PCGrad, B = 16000 0.496 0.887 0.851 0.770 18.8
V-PCGrad, B = 56000 0.511 0.891 0.869 0.779 65.1

Full Model Finetuning 0.378 0.778 0.363 0.613 91.1
Random Baseline 0.144 0.547 -0.023 0.393 0

From these results, we extract the following takeaways:

(i) PCGrad significantly outperforms the baseline of individually finetuning each task, in much
less time, validating it as an approach for MTL.

(ii) As expected, A-PCGrad outperforms V-PCGrad by increasing performance on the under-
represented tasks.

(iii) As B increases, the performance of both V-PCGrad and A-PCGrad tends to increase, as
well as the runtime. This makes sense, as we are utilizing more training data. We also
observe that there is an upper-bound for B with the largest performance gain, after which
performance tends to degrade. Given that the smaller datasets are likely exhausted, this
performance degradation likely indicates the over-represented task has begun to dominate.

(iv) RR-PCGrad is more fair than V-PCGrad. In particular, it is the second best-performing
approach on the under-represented tasks. Furthermore, RR-PCGrad is much more efficient
than the other tasks, finishing in significantly less time However, due to its poor utilization
of QQP data, it vastly under-performs on the Paraphrase Task.

5.4 Experiment 2: Exploring AARP

Next, we investigate approaches towards overcoming the data bottleneck introduced by RR-PCGrad.
Before proceeding with the main experiment, we also notice the following result after running AARP
for 1 epoch.

Table 3: AARP performance vs. Number of Task-Specific Batches

Method Paraphrase Accuracy Additional Minutes / Epoch
RR-PCGrad 0.752 0
ARRP, B = 18000 0.759 1.6
ARRP, B = 270466 0.762 18.1
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This indicates that we can achieve large performance benefits by deploying AARP on only a fraction
of the QQP dataset, with a huge speedup. As such, we also investigate different choices of B and
their affect on performance and run-time.

To proceed with our next experiment, we also train for 10 epochs with learning rate 1e-5. We
denote the penalty applied to the task-specific loss as λ. Let F denote which parameters were frozen:
F = 0 corresponds to not freezing any model parameters during task-specific finetuning, and F = 1
corresponding to freezing all parameters except the linear layer for the paraphrase task. We observe
the following results

Table 4: Performance After 10 Epoch

Method Sentiment Paraphrase Similarity Dev Minutes / Epoch
RR-PCGrad, B = 6040 0.528 0.829 0.866 0.763 7.13
A-PCGrad: B = 56000 0.535 0.892 0.869 0.785 45.18
ARRP, F = 1, λ = 1, B = 24000 0.508 0.838 0.8 0.761 8.10
ARRP, F = 1, λ = 0.5, B = 24000 0.527 0.830 0.868 0.764 8.11

ARRP, F = 0, λ = 0.3, B = 24000 0.521 0.867 0.872 0.775 14.47
ARRP, F = 0, λ = 0.5, B = 24000 0.520 0.878 0.866 0.777 14.47
ARRP, F = 0, λ = 0.7, B = 24000 0.511 0.875 0.867 0.773 14.47

ARRP, F = 0, λ = 0.1, B = 100000 0.511 0.899 0.879 0.783 30.76

From this experiment, we observe the following punchlines:

(i) The most significant finding is that AARP is able to achieve compare performance to
A-PCGrad. This is an exciting result which validates this approach for MTL.

(ii) AARP provides significant performance speed-up to A-PCGrad, even when using more over-
all data. This speed-up makes sense, since A-PCGrad is computing a more computationally
expensive joint loss every iteration, whereas AARP is mostly computing single-task loss.

(iii) As B increases, the performance on the paraphrase task increases. However, this comes
at the expense of the performance on other tasks. Achieving good performance across all
tasks requires carefully balancing increases in B with decreases in λ. This also comes at the
expense of additional run-time. We also notice that can tradeoff between performance and
run-time by modulating B.

(iv) F = 1 does not offer any significant benefit for any value of λ. One explanation for this
behavior is that too few model parameters are updated to have a substantial affect on overall
performance.

5.5 Discussion

Our experiments validated AARP as an approach to MTL. We suggest that AARP is able to use
RR-PCGrad to increase fairness across joint optimization, while still exploiting extra training data
for tasks with large amounts of available data. We suggest this behavior largely arises due to careful
selection of λ to avoid this task-specific fine-tuning from dominating the overall training objective.

6 Analysis

6.1 Sentiment Analysis

Given the deployment of AARP, we seek to understand the overall behavior of our model. We begin
by looking at the sentiment analysis task. First, we construct a normalized confusion matrix for the
dev set predictions, as well as a plot of the overall distribution of categories in the original training
data.
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Figure 2: Confusion Matrix and Category Distribution for Sentiment

This confusion matrix reveals the following takeways:

(i) There is a strong trend along the diagonal, which indicates that even inaccurate classifications
are generally close to the original label. This behavior is reassuring, and makes sense given
that certain categories (e.g. negative vs somehwat negative) are quite subjective.

(ii) We notice that categories with more training instances have the highest classification accu-
racy. One future experiment could explore whether performance on this task improves by
balancing the distribution of categories.

Finally, we also observe a number of rollouts which may indicate problems in the training set itself. In
these examples, we personally believe the model’s prediction to be more accurate than the annotated
label.

Text True Label Predicted Label
It ’s a lovely film with lovely performances by Buy and Accorsi. Somewhat Positive Positive
Creepy, authentic and dark. Neutral Somewhat Positive

6.2 Paraphrase Accuracy

Figure 3: Confusion Matrix and Category Distribution for Paraphrase

Similarly, we plot a normalized confusion matrix and the distribution of categories in training data
for the paraphrase detection task. This graph reveals that there is also a slight bias towards predicting
the label with over-represented training data, however, this is much less pronounced than for the
sentiment classification case. One explanation for this behavior is that the greater quantity of training
data reduces this biasing affect.

We also notice the same trend in sentiment classification that certain output from the model may be
more accurate than the annotation. This highlights that the model’s accuracy may also be artificially
deflated by annotation errors in the QQP dataset.
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Sentences True Label Predicted Label
Is jailbreaking iphone 6s worth it? 0.0 1.0Is it worth jailbreaking the iPhone 6s?

How does it feels to be in love? 1.0 0.0How does it feel to be doing what you love?

6.3 Textual Similarity

Finally, we plot a scatterplot of the true and predicted labels on the STS dev set. We also compare the
L1 distance between labels, and group predictions into categories of based on this distance.

Figure 4: Similarity Comparison

This plot reveals the most predictions fall into the "close" category, which relatively few extreme
outliers. However, the outliers which do exist reveal quite concerning behavior. For instance,
we notice the following failures, which indicate the model has limited semantic understanding
in some contexts. These failures could be the result of the limited training data for this task, or
over-optimization on other tasks (e.g. Paraphrase Detection).

Sentences True Label Predicted Label
A man is riding a bicycle. 5.0 2.93A man is riding a bike.

A swimmer is doing the backstroke in the swimming pool. 4.8 2.34A person doing the back stroke in a swimming pool.

7 Conclusion

This paper introduced a novel extension to PCGrad, called AARP, which alternates between comput-
ing a more fair Round-Robin PCGrad and fine-tuning on tasks with underutilized training data. We
found that AARP provided a significant performance speed-up compared to other approaches, such as
annealed sampling, with a comparable performance. In particular, we achieve a score of 0.783 on the
dev data set using AARP (compared to 0.785 for PCGrad with annealed sampling), while providing a
roughly 1.5x speedup. Moving forward, it may be interesting to extend AARP to regimes in which
more than one tasks have large amounts of training data, or when tasks have several different tiers of
training data magnitude. Overall, this project suggests there are many future research directions for
factoring in fairness objectives into MTL.
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8 Ethics Statement

One driving force behind this project is the observation that PCGrad may over-optimize for tasks with
more representative data, leading to task-unfairness. We suggest that that AARP tries to balance some
notion of task-fairness with sufficient data utilization. However, we acknowledge that this tradeoff is
largely dependent on a hyperpameter, λ. For certain choices of λ, AARP will also over-optimize for
the task with more data.

This issue of over-optimizing for specific tasks with more data raises serious justice concerns. We
observe that in many settings, imbalances in training data often originate from social inequality and
biases. For example, consider the task of automated facial recognition. Buolamwini and Gebru
(2018) report that many datasets used to train facial recognition models models are overwhelmingly
composed of lighter-skinned subjects (79.6% for IJB-A and 86.2% for Adience). As a result, these
models underperform on people of color, and especially women of color. Consider the following
illustration 5 showcasing disparities in model performance for women with darker skin tones.

Given this example, we are weary of over-optimizing for certain tasks with more available data, as
this may perpetuate social biases. Beyond the results highlighted by the Gender Shades project,
dataset imbalances has serious impact across different domains, including ecological conversation
and autonomous driving (e.g. considering how to design robust policies in states with little data).

One technical intervention to solve this issue is to reformulate the loss objective to more carefully
weight different data points. For example, consider this illustration 6 of computing an average loss,
compared to a more fair scheme: group DRO (Sagawa et al. (2020)).

Group DRO indicates that technical interventions can be designed to increase fairness in ML al-
gorithms, even in cases with imbalanced training data. Practically, for AARP, the main technical
intervention to maximize fairness is to rigorously search for the correct balance between utilizing
available data, B, while decreasing its importance through the gradient-weight λ. This careful
hyperparameter tuning, in addition rigorous oversight when deploying this method, are critical to
fairly operationalize AARP.

5https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/
6https://stanford-cs221.github.io/autumn2023-extra/modules/machine-learning/

group-dro.pdf
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