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Abstract

A key problem explored within the field of developmental cognition is language
acquisition—infants acquire linguistic skills over a period of time, with the
learning trajectory reflecting the idiosyncratic ways in which adults talk to them.
Here, we model the first six years of language acquisition by training an artificial
language model on child-directed transcripts of spoken speech presented in
an age-ordered fashion. We show that developmentally-plausible trajectories
of syntactic knowledge acquisition emerge with age. These trajectories are
underscored by evolving attention patterns of children over different components
of sentences during comprehension as well as the formation of increasingly
meaningful textual representation clusters. Complex semantic understanding,
however, seems to require cognitive development beyond the first six years of life.
These results not only provide insights into language development that can benefit
researchers and linguists but also help in identifying effective learning strategies
for children.

Mentor: Chaofei Fan

1 Introduction

Developmental psychology, cognitive science, and psycholinguisitics research have long explored the
roles of language acquisition and scaffolding in infants from a behavioral point of view (Kuhl, 2000;
Sakai, 2005; Lust, 2006; Clark and Casillas, 2015; Guasti, 2017). A key component of language
acquisition is grammatical development—syntactic information is learned gradually over different
early stages in the child’s lifespan, with the exact course of acquisition dependent on the child’s
mother’s underlying grammar (Cameron-Faulkner et al., 2003). According to Gleason and Ratner
(2022), young children (ages ∼2) often produce sentences that lack tense and person markers (for e.g.,
elephant fall down). As early as 21/2 years, children begin combining sentences to express complex
or compound propositions. By age 3 or 4, they start acquiring a rule-governed grammar system.
This system leads them to incorrectly use irregular verbs (teeth → teeths) and tenses (fall → falled).
Additionally, children start learning different types of sentences, such as negatives (for e.g., no go
movies), wh-questions (without auxiliary verbs; for e.g., where daddy go?), and imperatives. There is
a heavy reliance on different intonation patterns used by adults for language development. 4 year-olds
could work with relative clauses (for e.g., pick up the walrus that is tickling the zebra). Yet, certain
constructions are not fully controlled by children at the time they enter school, like anaphora.

From a point of view of computational cognition and neuroscience, prior works have optimized
artificial neural networks of the ventral visual pathway on an auxiliary objective to understand brain
function and development (Yamins et al., 2014). Within language, large Transformer-based language
models (TLMs) like GPT, BERT, and RoBERTa have significantly advanced performance on several
benchmarks of natural language understanding tasks, although when pre-trained on massive datasets
(Radford et al., 2018, 2019; Brown et al., 2020; Devlin et al., 2018; Liu et al., 2019). While this
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Figure 1: Language acquisition in infants. Infants pick up linguistic skills from the way adults,
typically their parents, speak to them. This way of speaking differs significantly over the child’s
growth period, and the idiosyncrasies shape the trajectory of language acquisition. Sakai (2005)
identified the left lateral pre-motor cortex as the “grammar center” and the left inferior frontal gyrus
for sentence comprehension.

is an impressive feat, questions around language acquisition theory, requiring models to be trained
on developmentally plausible input of the quality and quantity that children are exposed to, still
prevail. Huebner et al. (2021); Vázquez Martínez et al. (2023); Yedetore et al. (2023) have previously
evaluated acquisition of linguistic skills like grammar and hierarchical rules in language models using
transcripts of child-directed speech. While informative, they fail to consider that linguistic traits often
emerge gradually over several years.

In this paper, we are the first to ask how linguisitic skills are developed over the course of several
years in young children (figure 1). We do so by evaluating grammatical knowledge acquisition in
language models when trained on transcripts of child-directed speech in an age ordered fashion.
Specifically, we address the following:

1. The vocabulary of a child is significantly affected by how adults (parents or caregivers)
speak to them (Cameron-Faulkner et al., 2003), with, for e.g., the verbs first used by them
being those most frequently used by their mothers (Naigles and Hoff-Ginsberg, 1998). If
adults use simple sentences that are mostly rhetorical with lots of repetition for infants (for
e.g., Is that a baby? Is that a picture of a baby? Oh what a nice baby.) and longer, more
complex, sentences for preschoolers, how is grammar acquisition affected by this change?
(section 4.1).

2. In addition to grammatical knowledge, to what extent is complex semantic knowledge
learned in early years? (section 4.2).

3. What underlying mechanisms support such acquisition? Is there a qualitative change in the
attention maps and textual embedding representations over time? (sections 4.3 and 4.4).

2 Related Work

Evaluating language models. There is a rich set of literature on language model evaluation—
previous works have analyzed the capability of language models to perform natural language under-
standing in the form of sentiment analysis (Liang et al., 2023; Zeng et al., 2023), text classification
(Liang et al., 2023), natural language inference (Lee et al., 2023), semantic understanding (Tao et al.,
2023), reasoning (Xu et al., 2023; Wu et al., 2023; Gendron et al., 2024), performance on multilingual
tasks (Ahuja et al., 2023), factuality (Honovich et al., 2022; Wang et al., 2023), robustness (Yang et al.,
2023) and bias (Gehman et al., 2020), and several others. All these evaluation datasets, benchmarks,
and analyzes are aimed at understanding language models for the sake of being able to deploy and
work with them in everyday life. Language models evaluated are those that are typically huge in
the number of parameters and are trained on developmentally unrealistic amounts of data from the
internet.

Computational language acquisition. In contrast to a general evaluation of language models,
research that has tried to model language acquisition have done so to further our understanding of
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Figure 2: Schematic of the acquisition mechanism. We start with an untrained BabyBERTa
network to represent an infant who has not yet started acquiring linguistic skills. We first train it on
transcripts of speech directed at children of ages between 0 and 1. Next, we take this partially trained
BabyBERTa and feed it transcripts for children between the ages of 1 and 2. We repeat this process.

psycholinguisitics and developmental cognition. Huebner et al. (2021) develop BabyBERTa—a
scaled-down version of RoBERTa-base (Liu et al., 2019)—as well as a grammar test suite called
Zorro to observe learning of strong grammatical knowledge even on small corpora of child-directed
language. Vázquez Martínez et al. (2023) carry this forward by evaluating BabyBERTa not just on
Zorro but a wide range of other linguisitic benchmarks. Yedetore et al. (2023) try to understand the
use of hierarchical rules by language models when trained on child-directed speech. A limitation of
these works is that they train language models on the entire training data of child-directed language
in a random order all at once. We know that adults adapt the way they talk to an infant versus a
preschooler. We thus distinguish ourselves by training BabyBERTa on child-directed language in an
age-ordered fashion to analyze acquisition trajectories across linguistic skills.

3 Methods

We use BabyBERTa (Huebner et al., 2021) as an artificial model of how language acquisition works
in the biological brain. It is trained using a masking removal policy. This means that if the objective
is to reconstruct masked tokens when p% of the tokens are masked, the loss function is defined as

L = −
n∑

i=1

mi∑
j=1

logP (wi,j |x̃i),

where wi,j is the ground truth of the jth masked token of the ith sequence, x̃i is the masked context,
n is the total number of sentences, and mi is the number of masked tokens in the sentence. Masked
tokens are unmasked for prediction 0% of the time. This allows BabyBERTa to attend to lexical
context over the input for prediction.

To model acquisition, we use the following approach (figure 2): we first train BabyBERTa on
transcripts of speech an infant would hear during its first year of life. We evaluate the model’s
capability of acquiring linguistic skills (syntactic and semantic) at this stage. We then train this model
on transcripts of speech an infant would hear during its second year of life. This means that the
model obtained at this stage would have seen data that children of both ages 1 and 2 would hear. The
process continues.

3.1 Data

We train BabyBERTa on the Age-Ordered CHILDES Dataset (Huebner and Willits, 2021). Sentences
in this dataset are attached to the age of the child to which they were spoken to by an adult. There are
3304 different transcripts in the whole corpus, and 4,960,141 words. Example sentences include let’s
go, we’re gonna get some clothes, this is a toy, and alright well we’ll just play around. If grouped into
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years, there are 89 transcripts for ages 0-1, 854 for ages 1-2, 1385 for ages 2-3, 691 for ages 3-4, 253
for ages 4-5, 32 for ages 5-6. The standard pre-processing routine of lowercasing sentences and using
a byte-level Byte-Pair Encoding (BPE) tokenizer are used. Because 5M words are relatively small for
a dataset, we duplicate each input sequence 10 times and apply a novel random mask to each. This
ensures that BabyBERTa receives ∼50M words, which becomes developmentally plausible.

3.2 Metric

To evaluate syntactic knowledge acquisition, we use Zorro (Huebner et al., 2021). This grammar test
suite contains pairs of test sentences that isolate specific phenomena in syntax and morphology, such
as island effects and determiner-noun agreement. For example, BabyBERTa must score higher on
the grammatically correct sentence this dollar must be sufficient over the grammatically incorrect
sentence this dollars must be sufficient. A preference score is computed by summing the cross-entropy
errors at each position in the sentence, with a higher sum denoting a higher surprisal. A complete list
of phenomena evaluated are shown in section A.1. Additionally, we evaluate semantic knowledge
acquisition using tasks from the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018): sentiment analysis, paraphrasing, natural language inference, textual entailment,
etc. Additional details on the tasks are presented in section A.2. During evaluation, we assume
that the vocabulary of a model “aged” X is the same as the vocabulary of a model “aged” Y for all
X ,Y ∈ [6]; i.e., we use the same sentences in the benchmark tasks across trained models to make
results comparable.

3.3 Implementation Details

For training BabyBERTa, we use an AdamW optimizer (Loshchilov and Hutter, 2019). The learning
rate is initialized to 1e-4 and then decayed according to a linear schedule with a warmup period of 1k
steps for age 1, 9k for age 2, 150k for age 3, 7k for age 4, 2k for age 5, and 0 for age 6. We use a
batch size of 16. The data is split into a training and validation set based on a train split fraction of
0.9 for age 1, 0.95 for age 2, 3, 4, and 0.9 for age 5, 6. Hyper-parameter tuning is performed using
the validation set perplexities. Experiments are run on an NVIDIA T4 GPU on Google Colab and
take around 1 hour each for training.

For evaluation on the GLUE dataset, we use an Adam optimizer with the learning rate initialized to
2e-5 and decayed according to a linear schedule. The optimizer is trained for 10 epochs with 500
warmup steps and a batch size of 16. Experiments are run on an NVIDIA T4 GPU on Modal,1 taking
around 5 hours each.

4 Results

4.1 With age, developmentally-plausible trajectories of syntactic knowledge acquisition
emerge for different phenomena

With our initial evaluation of grammar learning by BabyBERTa, we observe that there is an increase
in syntactic knowledge with age, with most of the skills learned by the age of 3 (figure 3). Different
syntactic phenomena are learned differently and with different speeds. Determiner-noun agreements,
subject-verb agreements, filler-gaps, and existential quantifiers are learned gradually and mastered
(accuracy >80%) by an age of 3. Phenomena such as swapped arguments, subjective pronouns,
and local attractors are mastered from the first year of life. In contrast, phenomena like anaphora,
irregular verbs, and ellipsis are either never learned or mastered. These results mostly align with
developmentally-plausible learning trajectories. Low performance on irregular verbs demonstrates
the plausible learning of a rule-based system that is observed in children as well (Gleason and Ratner,
2022). Contrastly, it is surprising that performance on superlative quantifiers is better than chance
right from an age of 1, but goes down by an age of 5. When we compare our results to the results
from Huebner et al. (2021) who trained BabyBERTa on the same dataset but in an age-agnostic
fashion, we find that our model is able to achieve the same accuracy across all syntactic phenomena.
Moreover, we often find some phenomena like determiner-noun agreements, irregular verbs, and
island effects with coordinate structure constraints achieve that accuracy with even fewer amounts

1https://modal.com/
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Figure 3: Evaluation on Zorro. Gray markers represent the top-1 test accuracy of BabyBERTa as a
function of its “age”. Black lines are degree 3 curves of best fit. Pink lines represent the accuracy that
BabyBERTa achieves when trained on the entire training data in an age-agnostic manner (Huebner
et al., 2021).

of data (earlier along the developmental trajectory) than Huebner et al. (2021), highlighting the
remarkable capabilities of language acquisition with low amounts of verbal stimuli.

4.2 Complex semantic understanding requires cognitive development beyond the first few
(=6) years of life

Next, we evaluate the semantic understanding of BabyBERTa across different “ages” through complex
tasks like sentiment analysis, textual entailment, paraphrasing, etc. We find that even after a period
of 6 years, semantic relationships for complex tasks are not learned (figure 4). Across different
tasks from the GLUE dataset, the performance of BabyBERTa at an age of 1 is approximately the
same as that at an age of 6. This is not surprising; these tasks not only contain sentences that are
semantically complex and most likely not similar to what children would hear at their age (for e.g.,
The city Tenochtitlan grew rapidly and was the center of the Aztec’s great empire), the vocabulary
that they encompass expands beyond what children learn within their first 6 years of life. Good
performance on these tasks will require more time as well as learning from speech or written text
directed at adults (like Wikipedia).

4.3 The sentence components that children attend to during comprehension evolves with age

In an attempt to understand the mechanisms underlying early grammar acquisition, we visualize
attention heatmaps of BabyBERTa at different developmental stages for five different sentences
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Figure 4: Evaluation on GLUE. Gray markers represent the top-1 (unbalanced) test accuracy of
BabyBERTa as a function of its “age”. Black lines are degree 3 curves of best fit. Pink lines represent
the accuracy that BabyBERTa achieves when trained on the entire training data in an age-agnostic
manner (Huebner et al., 2021).

Figure 5: Attention heatmaps. For five different sentences, we visualize how BabyBERTa’s attention
to different parts of the sequences evolves with “age”.

(figure 5). At an age of 1, BabyBERTa has the first word (mostly a subject) attend to the word
immediately following (mostly the verb), as well as the last word (mostly the punctuation) attend to
the start of the sentence. This suggests that the infant is able to infer long-range relationships between
sentence components for comprehension. With age, more nuanced relationships such as those
between determiners and nouns (for e.g., this dinner), verbs and objects (for e.g., made ... dinosaur),
multiple nouns (for e.g., lion, guys), and relative clauses (for e.g., lion ... study) are identified. These
results show that children, with age, acquire increasingly complex syntactic information that helps
them attend to different sentence components for effective comprehension.
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Figure 6: Textual embedding representations. Here we visualize how BabyBERTa adapts the way
it clusters words and tokens together with “age”.

4.4 Children form increasingly meaningful textual representation clusters as they grow,
especially since an age of 4

In addition to visualizing attention maps, we also analyzed how textual representation clusters change
with age (figure 6). Initially, while the clusters are not entirely distinct, there is some degree of
clustering present among verbs (run, eat, etc.), quantifiers (little, more, etc.), and emotions (happy,
sad, etc.). A major change from age 1 to 2 is the strong clustering of verbs. Wh- question words
(who, what, etc.) also start coming closer. The noun birthday which was initially clustered along with
quantifiers and prepositions is now clearly separated out. By the age of 3, animal categories come
together. However, a clear clustering of all categories together is seen by the age of 4—a cluster of
prepositions and conjunctions (in, on, and, etc.) become visible. And these clusters get further spaced
out by the age of 5. The formation of well-defined distinct clusters for different syntactic groups by
the age of 4 support the acquisition of most syntactic phenomena in figure 3 and are developmentally
plausible.

An interesting observation is that the verb do is always clustered with emotions than with the other
verbs. Similarly, mommy, daddy, and friend are always clustered with hello and bye. We think that
this might be because of the contexts in which these words often co-appear, with for e.g., the verb do
being followed by expressions of happiness or sadness based on what the child did.

5 Discussion

In this work, we modeled early language acquisition in children by analyzing both syntactic and seman-
tic learning trajectories with age. We observed that syntactic learning trajectories are developmentally-
plausible, underscored by evolving attention patterns of children over different components of
sentences during comprehension as well as the formation of increasingly meaningful textual represen-
tation clusters. Complex semantic understanding, on the other hand, requires cognitive development
beyond the first six years of life. These results not only provide insights into language development
but also help in identifying effective learning strategies for children.

Some limitations of our work involve the following modeling assumptions that we make:

Innateness. An interesting yet important consideration that we avoid here is whether language
acquisition is innate or not. While most linguists and neurobiologists do not believe in linguistic
nativism, it is still important to ask ourselves, especially when trying to create a biologically-plausible
model of language acquisition, how best to resolve arguments put forth by Chomsky and the presence
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of a universal grammar (Chomsky, 2014), of language localization to Broca’s and Wernicke’s area
Pinker (1994), or of language evolution (Botha, 2021).

Prosody. Here, we model language acquisition purely through speech transcripts (i.e., text). Children
during early language acquisition receive stimuli mostly verbally. Prosody—the use of stress and
intonations while talking—can encode substantial linguistic information that can play a crucial role
in syntactic acquisition (Warstadt and Bowman, 2022). How would language models (or models of
audition, more specifically) behave when having to detect word, phrase, and sentence boundaries
themselves? Does providing processed input with pre-defined tokens to language models significantly
affect how linguisitic skills are acquired?

Second language acquisition. Several studies have previously argued for the presence of a “critical
period” beyond which learning of syntactic relationships becomes difficult. These hypotheses,
however, talk about second language acquisition (Kuhl, 2004, 2010). The initial coding of native-
language patterns due to neural commitments eventually interferes with the learning of new patterns
in a foreign language. With extensive research in second language acquisition, can we try to simulate
what happens developmentally? How do syntactic relationships vary across the languages? Is there a
common system of semantic patterns formed that underlies proficiency in bilingual or multilingual
children?

As future work, we might try to analyze the interaction of prosodic and multimodal stimuli in both
native and second language acquisition, hoping to unravel more interesting observations and insights
into developmental cognition.

6 Ethics Statement

• The primary challenge with a work of this nature is data privacy. Child-directed transcripts of
speech might contain sensitive information about the family that, if fallen into an adversary’s
hands, could lead to bad outcomes in the form of extortion or social embarassment. Specifi-
cally, speech transcripts often encode idiosyncratic information about behaviors that a child
exhibits, or the relationship that the family sustains. Thorough data cleaning and sensitive-
information masking/removal efforts are required. This can be done by anonymizing names
by pseudonyms like Alpha or Delta.

• In relation to the trained model itself, it is important to consider a downstream user’s over-
reliance on BabyBERTa’s ability to acquire language. Since the data that BabyBERTa is
trained on comes from humans, there might be inherent stereotypical and discriminatory
biases that the model might pick up, being potentially visible in the way it constructs its
semantic representation space. This is further amplified by the dataset being small and
consisting of transcripts from a handful of families. Quantifying social biases might be one
way in which this can be identified (Czarnowska et al., 2021).

• And finally, it is always important to keep in mind providing open-source access to the
way we train BabyBERTa. Fei-Fei Li, Percy Liang, and others have been big advocates
of open-sourcing research and models,2 and for others to be able to see the architecture,
training data, training method, as well as algorithmic nuances before deploying a model
blindly to a downstream task becomes important. We open-source any and all experiments
that we carry out for the benefit of future research. Furthermore, having more resources
be invested in the development of small-scale models trained on small datasets to control
the amount of environmental resources (water, electricity, etc.) we use would need to be
advocated for, not just by governments and not-for-profit institutions but also by every one
of us.

2https://hai.stanford.edu/issue-brief-considerations-governing-open-foundation-models
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A Datasets

A.1 Zorro

The Zorro dataset evaluates language models on the syntactic phenomena presented in table 1.

A.2 GLUE

From the GLUE benchmark we use the following tasks:

Corpus of Linguistic Acceptability (CoLA): This task (Warstadt et al., 2019) asks an evaluatee to
determine if an English sentence is grammatical. The metric used is Matthews correlation coefficient,
with values ∈ [−1, 1].

Stanford Sentiment Treebank (SST-2): This task (Socher et al., 2013) requires evaluatees to predict
the sentiment (positive or negative) of sentences from movie reviews and human annotations.

Microsoft Research Paraphrase Corpus (MRPC): This (Dolan and Brockett, 2005) is a corpus of
sentence pairs from online news sources, asking evaluatees to determine whether the sentences in the
pair are semantically equivalent.

Quora Question Pairs (QQP): This task (Wang et al., 2017) consists of a collection of question
pairs from Quora for determining whether a pair of questions are semantically equivalent.

Question Natural Language Inference (QNLI): This task (Rajpurkar et al., 2016) consists of
a question-answering dataset with question-paragraph pairs, requiring to determine if the context
sentence contains the answer to the question.

Recognizing Textual Entailment (RTE): This task combines data from RTE1 (Dagan et al., 2005),
RTE2 (Bar-Haim et al., 2007), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009)
to pose whether the two sentences provided demonstrate entailment.

Winograd Natural Language Inference (WNLI): This (Levesque et al., 2012) is a reading com-
prehension task in which an evaluatee is presented with a sentence pair and must determine if the
sentence with a pronoun substituted by a referent is entailed by the original sentence.

B Code Availability

We release all code under the MIT license at https://github.com/ynshah3/
LanguageAcquisition.
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Table 1: Zorro evaluation phenomena: example positive and negative sentences.

Phenomenon Negative Positive

Determiner-noun agreement
across 1 adjective Look at this purple things. Look at this purple thing.

Determiner-noun agreement be-
tween neighbors This colors must be white. This color must be white.

Subject-verb agreement across
prepositional phrase The lies on the foot is flat. The lie on the foot is flat.

Subject-verb agreement across
relative clause The books that I like is poor. The book that I like is poor.

Subject-verb agreement in ques-
tion with auxilliary Where does the horses go? Where does the horse go?

Subject-verb agreement in simple
question Where is the ways? Where is the way?

Anaphora agreement
Will Mark want herself? Will Mark want himself?

Dropped argument
The poor boat gives me. Give me the poor boat.

Swapped argument
The wolf made her ball they. They made the wolf her ball.

Transitive
Philip affected. Philip thinks.

Binding: principle A
Ben thinks about himself called
this fuel.

Ben thinks about himself calling
this fuel.

Case: subjective pronouns
The wolf brought I my hill. I brought the wolf my hill.

Ellipsis: N-bar
A sister visited one whale and
Roger visited three little/

A sister visited one little whale
and Roger visited three.

Filler-gap: why question object
Sarah knew what the general
knew the doctor.

Sarah knew the general that the
doctor knew.

Filler-gap: why question subject
Laura ended who the finger can
make boats.

Laura ended the finger that can
make boats.

Irregular verb
Will grown quickly at home. Will grew quickly at home.

Island effects: adjunct
Who should William have the
baby without watching?

Who should William have without
watching the baby?

Island effects: corrdinate struc-
ture constraint Who must Philip turn and the di-

nosaur.
Who must Philip and the dinosaur
turn?

Local attractor in question with
auxilliary Is the whale gets the person? Is the whale getting the person?

NPI licensing: matrix question
Her boat does ever play with the
growth?

Does her boat ever play with the
growth?

NPI licensing: only licensor
Even Mark ever finds some suit. Only Mark ever finds some suit.

Quantifiers: existential there
There are most books about soft
birds.

There are many books about soft
birds.

Quantifiers: superlative
No pig could stand on top of at
least six days.

No pig could stand on top of more
than six days.
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