
Task-Specific Parameter Efficient Fine-Tuning for
Improving Multitask BERT

Stanford CS224N Default Project

Brian K. Ryu
Department of Computer Science

Stanford University
bryu@stanford.edu

Abstract

In this CS224N Default Project, I investigate the applicability and effectiveness
of various low-rank adaptation methods for fine-tuning BERT models under con-
strained budgets. Recent parameter-efficient fine techniques LoRA and DoRA were
applied to task-specifically fine-tune a Multitask-BERT model. The implementation
allows switching the fine-tune weights on the fly. During the study, I investigate
memory and compute savings enabled by LoRA/DoRA fine tuning as well as the
impact of the fine-tuning rank r and compare them to those from fully training the
model. Through experiments with various values of, r, I determine whether the
authors’ claim of "efficient training with no accuracy loss" is achievable through
minimal hyper-parameter tuning.

1 Key Information to include

• Mentor: Tony Lee
• External Collaborators (if you have any): No
• Sharing project: No

2 Introduction

Since the advent of transformers,(Vaswani et al. (2017)) transformer-based large language models
(LLMs) have demonstrated remarkable success in various natural language tasks such as classification
and text generation. Notably, the success of subsequent large language models such as BERT,(Devlin
et al. (2019)) GPT-2,(Radford et al. (2019)) and GPT-3(Brown et al. (2020)) have shown that the
increasing the size of the network–as measured by the number of weights–seemingly imbues strengths
and capabilities to language models that were unprecedented in smaller scales.

A natural consequence of such successful language models was a race towards larger and larger
networks, which has led to compute, memory, and power-hungry gargantuan models. The exponential
increase in scale of models can be seen from the progression from BERT with 340 million parameters
in 2018(Devlin et al. (2019)) to GPT-2 with 1.5 billion parameters in 2019,(Radford et al. (2019))
GPT-3 with 175 billion parameters in 2020.(Brown et al. (2020)). To support the precipitous growth
of LLMs, major GPU suppliers have been consistently increasing the VRAM size of datacenter GPUs.
For example, NVIDIA’s flagship datacenter GPUs’ memory sizes have grown from 32GB (V100,
2017) to 80GB (A100, 2020) and 141GB (H200, 2024).(NVIDIA (2017, 2020, 2022)). Nevertheless,
the rate at which deep learning accelerators were scaling their VRAM sizes were unable to follow
the rapid growth of model sizes. Hence as language models have become larger, the paradigm for
training models has shifted from training task-specific models from scratch to loading a pre-trained
language model (often called a foundational model) and fine-tuning it for a targeted task. However,
recent state-of-the-art models have become too large to even fine tune on a single or a smaller number
of hardware accelerators such as GPUs or TPUs available for most researchers due to memory

Stanford CS224N Natural Language Processing with Deep Learning

constraints. An alternative approach that alleviate the large memory constraint is to fine-tune a
fraction of the model, such as the last several layers, but such approaches often face challenges in
achieving the highest model accuracies.

One avenue for mitigating the memory and compute constraints of large language models is parameter-
efficient fine-tuning (PEFT) that utilizes clever approaches for fine-tune LLMs by training a small
number of parameters compared to the overall number of trainable parameters. PEFT techniques
primarily solve the memory limitation of modern LLMs as well as reduce the amount of compute
necessary to achieve the level of fine-tuning, which can reduce energy consumption and democratize
LLMs from select groups with large compute resources to a broader population of users.

In the current project, I aim to improve the accuracy of the multi-task classification BERT model via
parameter-efficient fine tuning and data augmentation. Through a combination of these approaches,
I demonstrate that accuracy improvements can be achieved while maintaining a small memory
footprint.

3 Related Work

Among several works and models that have attempted PEFT, LoRA has received much attention
by reducing the number of trainable parameters during downstream tasks.(Hu et al. (2021)) By
recognizing the fact that most parameter updates during fine tuning are in fact low-rank and therefore
the updates can be decomposed into two low rank matrices, the authors demonstrate that the memory
requirement can be reduced by a factor of O(10, 000) and training can be accelerated by around 25%.
This is achieved by modifying the forward pass as:

h = W0x+∆Wx = W0x+BAx (1)

where W0 ∈ Rd×k is a pre-trained weight matrix, x is an input, and B ∈ Rd×r and A ∈ Rr×k are
lower-rank matrices where r ≪ min(d, k). Memory footprint is reduced because fixed weights only
contribute only 4 bytes per single precision weight parameters, while trainable weights contribute
several multiples of that depending on the optimizer used. The large reduction in memory is valuable
because the sizes of modern large language models are typically bounded by memory constraints,
rather than the amount of compute.

The contribution of LoRA to the deep learning community is broad and impactful. Since its introduc-
tion in 2021, LoRA has been widely adopted for other models and tasks such as vision transformers
for computer vision,(He et al. (2022)) or diffusion models. Moreover, the success of LoRA led to
a rise of a family of derived methods such as AdaLoRA,(Zhang et al. (2023)), VeRA,(Kopiczko
et al. (2023)), Delta-LoRA,(Zi et al. (2023)), and LoRA+(Hayou et al. (2024)). A recent method
introduced by researchers at NVIDIA is DoRA, that mitigates the accuracy loss from the low-rank
decomposition of weight updates by deomposing a weight matrix into its magnitude and direction at
the column level.(Liu et al. (2024))

4 Approach

Parameter-Efficient Fine Tuning (PEFT): This project to investigates the applicability and efficacy
of low-rank adaptation methods for fine-tuning BERT under a constrained budget of the 224N project.
As such, I have implemented LoRA as described in the reviewed paper.(Hu et al. (2021)) Then,
experiments with various low-rank values, r, were conducted to determine whether the authors’ claim
of "efficient training with no accuracy loss" is achievable through minimal hyper-parameter tuning.

LoRA is a general approach that can be applied to various trainable weights of any neural network.
Here I specifically applied task-specific LoRA to key, value, and query weight matrices only. The
implementation uses:

M = (WM +∆WM
t)X = (WM +BM

t AM
t)X (2)

where M ∈ {K,Q, V } is a general matrix that can be either key, query, or value; WM is the
pre-trained key, query or value weight matrix; X is the input hidden state; ∆WM

t is the low-rank fine-
tuning matrix for task t ∈ {sentiment, paraphrase, similarity}; and BM

t and AM
t are decomposed

2

low-rank LoRA matrices. In summary, the implementation utilizes pre-trained weights + t-specific
fine-tuning weights ∆WM

t for the key, query, and value (see Figure 1). The task-specific weights are
stored in the LoraBertSelfAttention class and can be swapped out via a switch_mode function on the
fly.

Pre-trained
Weights

WM

BM
t

AM
t

BM
t

AM
t

BM
t

AM
t

M ∈ {K, Q, V} sentiment,
paraphrase, similarity

t ∈ { }

+

Figure 1: Schematic illustration of total weight matrix WM +∆WM
t . Colors represent task-specific

fine-tune weights.

For the extension to DoRA,(Liu et al. (2024)) the LoraBertSelfAttention had an added boolean
member use_dora that altered into

M = m
(WM +∆WM

t)

||WM +∆WM
t ||2′

X = m
(WM +BM

t AM
t)

||WM +BM
t AM

t ||2′
X (3)

where m = ||WM ||2′ and ||C||2′ is a row vector in which each element in index i corresponds to the
2-norm of the i-th column of matrix C. Similar to the LoRA implementation described above, the
task-specific weights are stored within the extended LoraBertSelfAttention class and can be switched
with the same switch_mode function on demand.

Data augmentation: In addition to employing parameter-efficient fine tuning methods, in this work I
utilized two data-augmentation approaches to augment the data provided through the default project.
Data augmentation, which is orthogonal to the parameter efficient training approaches above, was
intended to further push the accuracy of the training models.

The first approach for data augmentation is back translation, in which the original sentence is
translated to another language and translated back. For example, "Not all those who wander are lost"
(a quote from Lord of the Rings) can be translated to "Ekki eru allir týndir sem villast" in Icelandic,
which can be translated back to "Not everyone who goes astray is lost", which retains the same
meaning. For the translation task, a transformer-based neural machine translation model was used. I
have used Google’s MADLAD-400-3B-MT model(Kudugunta et al. (2024)) to augment the sst and
sts training sets by translating the English sentences to Korean and then back to English. The model
was used without modifications using weights and architectures provided by Hugging Face.

The second approach for data augmentation was EDA.(Wei and Zou (2019)) EDA utilizes synonym
replacement (e.g. "I am learning about deep learning techniques" to "I am learning about deep
learning methods"), random insertions (e.g. "The weather is nice" to "The weather is tortoise nice"),
swaps ("weather The is nice"), and deletions ("The weather nice").

Data augmentation was applied to the SST and SemEval STS data sets. Back translation was used to
double the data set size and EDA was used augment each sentence by 9x. Augmentation was not
applied to the Quora dataset which was already sufficiently large to avoid excessive use of resources
during training.

5 Experiments

5.1 Data

Since the current project is the default 224N project, I have primarily utilized the training datasets
provided through the project (SST, Quora, and SemEval STS). These train sets have been augmented

3

using the methods described in the previous section. During the data augmentation process, the
ratios of label imbalance has been mitigated by not augmenting the Quora dataset. However with
task-specific fine tuning, a separate set of fine-tuning weights are used for each task; the weights
across tasks are entirely independent because they are swapped out for each task. Hence, the order
of training for each task, as well as any kind of task-dependent data imbalance is not expected to
produce negative effects.

5.2 Evaluation method

As previously discussed, the accuracies of each task from multi-task evaluations are reported for
evaluation. Separately, memory and compute resources have been be tracked and reported to compare
the strength of PEFT methods LoRA and DoRA. Furthermore, different LoRA/DoRA ranks r have
been selected for comparison.

Memory (VRAM) usage and power consumption was measured by nvidia-smi. The compute usage is
measured by throughput (iterations per seconds) during training. To eliminate external effects such as
throttling which may result in unstable time measurements, GPU clock speeds will be appropriately
locked based on hardware specifications. Current experiments were done on an NVIDIA RTX3090
GPU with graphics clock locked at 1695 MHz. For NVIDIA GPUs, SM clocks can be locked via the
nvidia-smi -lgc command.

5.3 Experimental details

The baseline model for the default project is the default MultitaskBERT as provided by the assignment.
The model uses a separate and single linear layer with dropout probability p = 0.2 for each of the
sentiment analysis, paraphrase detection, and similarity detection task. Training for each task was
done round-robin style; within each epoch, the model was trained with the SST, paraphrase, and STS
dataset in order. Finally, the model was trained for 10 epochs each.

The LoRA and DoRA extensions to MultitaskBERT maintained the same architecture except for the
fine-tuning weights. The availability of LoRA and DoRA, each with rank r, and the use of augmented
data allows for a large number of combinations of model configurations. To avoid a combinatorial
explosion of possibilities, the LoRA extension was tested with a single rank r = 12, DoRA with
r = 1, 4, 12, 24, 128 without augmented data. Finally, DoRA with r = 12 and augmented data was
used to test the efficacy of the larger dataset. The same training approach was taken during each
model was trained for 10 epochs and round-robin style within each epoch. As mentioned in Section
5.1 above, the ordering of training does not affect training because each task is trained separately.

5.4 Results

The Dev set accuracies collected after the baseline, LoRA-MultiBERT and DoRA-MultiBERT with
various fine tuning ranks r are shown in Table 1. Interestingly, when comparing the accuracies
averaged across all three tasks, the DoRA-MultiBERT with rank r = 12 achieved the highest
accuracy, including the LoRA variant or when augmented data was used.

While LoRA and DoRA outperforming the baseline MultitaskBERT is expected due to task-specific
fine tuning capabilities, the results above indicate that data augmentation did not in fact improve the
accuracy achieved by the model. Reasons underlying the accuracies achieved by each model in Table
1 are discussed in Section 6.

The test-set predictions for DoRA-MultiBERT with rank r = 12 was submitted to the Gradescope
leaderboard. The accuracies and correlations achieved were 0.524 (SST accuracy), 0.892 (Para-
phrase accuracy), and 0.862 (STS correlation), with an overall test score 0.782.

The measured resources (VRAM and power consumption) and throughput (it/s on SST task) results
from training are summarized in Table 2. As expected, the default MultitaskBERT’s memory footprint,
VRAM usage is significantly heavier when training the full model. This is because the Adam optimizer
requires additional floating point values within memory for parameters that can be updated. Our
MultitaskBERT has roughly 109 million parameters (counted via PyTorch’s parameter.nelement()
function) and BERT uses roughly 18 bytes per parameter when training. Moreover, when comparing
LoRA-MultitaskBERT against MultitaskBERT, the memory footprint is close to last-layer-only
fine-tuning case while compute throughput is closer to that of the full-model.

4

Table 1: Training results for MultitaskBERT and LoRA/DoRA-MultitaskBERT

Trace Fine-Tune
Rank (r) LR SST

Dev. Acc.
Paraphrase
Dev. Acc.

STS
Dev. Corr. Dev. Avg.

MultitaskBERT
(last layer) 0 1e-5 0.412 0.743 0.510 0.555

MultitaskBERT
(full model) 768 1e-3 0.470 0.891 0.883 0.748

LoRA-MultiBERT 12 1e-4 0.519 0.890 0.835 0.748
DoRA-MultiBERT 1 1e-4 0.492 0.874 0.827 0.731
DoRA-MultiBERT 4 1e-4 0.510 0.889 0.842 0.747
DoRA-MultiBERT 12 1e-4 0.519 0.892 0.864 0.758
DoRA-MultiBERT 24 1e-4 0.506 0.892 0.845 0.748
DoRA-MultiBERT 128 1e-4 0.513 0.886 0.851 0.750
DoRA-MultBERT
(Augmented Data) 12 1e-4 0.504 0.864 0.847 0.738

Table 2: Measured resource consumption and throughput for MultitaskBERT and LoRA/DoRA-
MultitaskBERT

Trace Fine-Tune
Rank (r)

VRAM
Usage

SST
Thrpt.

Power
Consump.

MultitaskBERT
(last layer) 0 814 MB 115.5 it/s 320 W

MultitaskBERT
(full model) 768 2622 MB 18.7 it/s 270 W

LoRA-MultiBERT 12 1222 MB 20.9 it/s 230 W
DoRA-MultiBERT 1 1218 MB 21.0 it/s 240 W
DoRA-MultiBERT 4 1222 MB 22.0 it/s 245 W
DoRA-MultiBERT 12 1232 MB 20.9 it/s 244 W
DoRA-MultiBERT 24 1248 MB 20.8 it/s 245 W
DoRA-MultiBERT 128 1384 MB 19.6 it/s 266 W
DoRA-MultiBERT
(Augmented Data) 12 1232 MB 21.0 it/s 241 W

One notable factor in the result shown in Table 2 is the relative independence of fine-tune rank. The
use of LoRA/DoRA results in VRAM usage and compute throughput between layer-layer tuning and
full model tuning, but the rank r has small impacts on VRAM Usage and throughput. This result
suggests that the choice of the value of r may be primarily dictated by the accuracy achieved, rather
than resource constraints.

6 Analysis

6.1 Model Accuracy

The results shown in Table 1 generally indicate that LoRA and DoRA allow parameter-specific fine
tuning that is able to achieve accuracies comparable to tuning the full model. One notable trend
observable trend from Table 1 is the plateau of accuracy reached after r ≥ 12. In other words, we see
that increasing the fine-tune rank led to improved accuracy up to r = 12.

The diminishing return for higher r in the current experiment can be attributed to overfitting. Figure 2
shows the training and dev accuracies for SST and STS tasks measured and recorded during training
for r =12, 24, and 128. Examining the solid lines (dev accuracies) indicate that the training quickly
reaches terminal training accuracy within fluctuation in the first few epochs. However, the training
accuracies continue to increase during training, and the training-validation gap increases significantly
with larger fine-tune rank r, suggesting that the fine-tuning process is overfitting to the training data
despite the use of dropout with probability p = 0.2. This observation also validates the claims from
the original LoRA work,(Hu et al. (2021)) in which the weight updates during training appear to be

5

Figure 2: Training and dev SST Accuracy (left) and STS Correlation (right) during training for
DoRA-MultiBert r=12, 24, and 128. Dashed line with open markers indicate training accuracies
while solid lines with filled markers indicate dev accuracies.

low rank. The study in this work in deed shows that low-rank updates can sufficiently capture the
necessary features of the training data that must be learned.

Several methods can be used to mitigate the overfitting observed in the training above. First, different
hyperparameters can be explored. A single learning rate (1e-4) and dropout probability (0.2) was
used for all experiments. Searching for different values, as well as a decay schedule, may improve
generalization performance. Second, a different set of layers for generating predictions for each
task could be used. In the current implementation, the multitask classifier uses a single layer after
BERT’s outputs are generated for each task to compute the prediction. While deeper neural networks
are generally more susceptible to overfitting, including several layers that utilize dropout and other
techniques may increase the general accuracy of predictions.

6.2 Augmented Data

Another result shown in Table 1 is the negative impact of utilizing augmented data, which is
counterintuitive. the results indicate that all tasks suffered loss in dev accuracies. This may be
due to the quality of translations in the augmented data. Inspection of the augmented data obtained
via back translation using MADLAD-400-3B-MT(Kudugunta et al. (2024)) show translations of
mixed quality. In some cases, the translation was acceptable; for example:

• Original Sentence: Good fun , good action , good acting , good dialogue , good pace , good
cinematography . (Sentiment 4)

• Back translation: Fun, good action, good acting, good conversation, good speed, good
shooting.

are two sentences that sound sufficiently similar. In other cases, there were sentences that have
completely lost their meaning

• Original Sentence: An absurdist spider web . (Sentiment 1)

• Back translation: Improves the network speed of network players.

The overall quality of back translated sentences depends on the model and languages being translated.
While the MADLAD-400 family of models include 7B and 10B parameter variants, the 3B model
was used to rapidly generate translations. Using a larger variant will likely improve translation
qualities. Moreover, the choice of backtranslation may impact the quality of translation. Here,

6

English sentences were translated to Korean and back. Choosing a language that is better handled by
the neural translation model may lead to better augmented data.

Inspection of sentences augmented via EDA (Wei and Zou (2019)) show mixed quality as well. In
the following example,

• Original Sentence: The overall fabric is hypnotic , and Mr. Mattei fosters moments of
spontaneous intimacy . (Sentiment 4)

• EDA 1: the overall fabric is hypnotic and mr mattei foster moments cloth of spontaneous
intimacy. (random insertion)

• EDA 2: the overall fabric hypnotic and mr mattei fosters of sponatneous intimacy (random
deletion)

• EDA 3: the overall is hypnotic and mister mattei fosters moments of spontaneous intimacy.
(random deletion)

• EDA 4: the overall stephen foster fabric is hypnotic and mr mattei foster moments of
sponatenous intimacy (random insertion, switch ordering)

the original sentence conveys a strongly positive sentiment. While the augmented sentences all appear
to maintain a positive review, not all augmented sentences seem carry equally strong sentiments as
the original sentence. As such, the augmented dataset may have caused a deleterious effect on the
sentence sentiment evaluation task. This shows that (1) the quality of augmented data should always
be examined prior to use; and (2) when using augmented data for training, one may want to carefully
evaluate whether a data augmentation technique is suitable for generating data directed for the given
task.

7 Conclusion

In this CS224N Default Project, I have investigated the efficacy of parameter efficient fine tuning
methods LoRA and DoRA to multitask-BERT. Starting from a default BERT implementation and
pre-trained weights, a multitask-BERT model was implemented using a task-dependent last layer.
Then, the low-rank fine tuning method was implemented by additionally story the low-rank matrices
B and A. To impart task-specificity, the multitask-BERT model was initialized with separate low
rank matrices B and A for each task, and a switch_mode(mode) function was implemented to replace
the currently active fine-tuning weights on the fly.

Using the Multititask-BERT as a baseline, experiments were conducted by training the baseline model
and LoRA/DoRA extensions. During the investigation, augmented datasets were also employed to
study the usefulness of added synthetically augmented data. The results show that the LoRA(Hu
et al. (2021)) authors claim of "efficient training with no accuracy loss" is indeed achievable, even
with some naive hyperparameter tuning. However, the characterization of memory and compute
resources showed that the training was memory-efficient but not compute efficient; VRAM footprint
was small but training took nearly as long as training the full model. Nevertheless, in the current
age of explosive growth in model size, memory efficiency may be far more valuable than training
throughput; parameter efficient fine-tuning techniques such as LoRA and DoRA do indeed enable
training of large models in hardware accelerators with limited VRAM capacity.

Upon experimenting with several values of rank r, this study shows that weight updates to a
transformer-based model do indeed have a tendency for low rank. This is exemplified by the
result in which increasing the rank beyond a certain yet low rank value of r = 12 showed no meaning-
ful improvement in validation (dev) set accuracy. Finally, data augmentation techniques were applied
to increase the amount of data used in training, with hopes to increase training and dev set accuracy.
Yet, the augmented data was shown to yield no avail and in fact rather cause slight loss in accuracy.

One key limitation of the experiments in this study is the lack of sufficient hyperparameter tuning. A
naive learning rate of 1e-4 was selected without further experimentation for all parameter-efficient
fine tuning jobs. Moreover, a single dropout probability (0.2) was used. Given sufficient resources
and time, one may perform a basic hyperparameter tuning to achieve higher accuracy. Another
avenue for improvement is modification of the architecture of layers used after BERT. In the current
implementation, each task is given a single layer to generate a prediction. A larger number of layers

7

or architectures such as embeddings may be utilize to further make use of predictions returned by
BERT.

8 Ethics Statement

The current project expands on the default project, utilizes pre-trained BERT and data from the
Stanford Sentiment Treeband dataset, CFIMDB dataset, Quora dataset, and SemEval STS Benchmark
dataset. Additionally, a trained neural translation model, MADLAD-400 was used to generate
part of the augmented data (EDA does not involve machine learning). The tasks at hand are
sentiment analysis, paraphrase detection, and semantic similarity identification, which directly
evaluate sentences.

The pre-trained weights, datasets, and data augmentation tools may contain explicit or implicit biases
in evaluating the sentences at hand. Specifically, these biases may include unjustified prejudices
against certain ideas or people of specific groups such as gender, race, or even occupations. The
ramifications of such unfair biases can lead to incorrect classifications. As such, the tasks involved in
this work do not face the same risks as certain tasks such as sentence generations; the model cannot
generate hateful speech, unsupported claims, or unsafe advice. Nevertheless, implicit biases may be
present. As an attempt to mitigate introduction of biases in the augmentation step, I have selected a
neural translation model developed by a well-establish entity (Google) and an algorithmic approach
(EDA) for data augmentation, with the a that the publicly released MADLAD-400 model should have
been trained with "clean" data.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. Lora+: Efficient low rank adaptation of large
models. arXiv preprint arXiv:2402.12354.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. 2022. Parameter-
efficient fine-tuning for vision transformers. arXiv preprint arXiv:2203.16329, 3.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. 2023. Vera: Vector-based
random matrix adaptation. arXiv preprint arXiv:2310.11454.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi
Stella, Ankur Bapna, and Orhan Firat. 2024. Madlad-400: A multilingual and document-level
large audited dataset. Advances in Neural Information Processing Systems, 36.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. 2024. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353.

NVIDIA. 2017. Nvidia tesla v100 gpu architecture. Technical report.

NVIDIA. 2020. Nvidia a100 tensor core gpu architecture. Technical report.

NVIDIA. 2022. Nvidia h100 tensor core gpu architecture. Technical report.

8

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for boosting performance on
text classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for parameter-efficient fine-tuning. In International
Conference on Learning Representations. Openreview.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. 2023. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411.

9

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Model Accuracy
	Augmented Data

	Conclusion
	Ethics Statement

