
Enhancing multi-task fine-tuning on BERT-based model

Stanford CS224N {Default} Project

Xiaochen Xiong
Department of Biology

Stanford University
xxc15@stanford.edu
TA mentor: Josh Singh

Abstract
Nature language processing tasks, including sentiment analysis, paraphrase detec-
tion, and semantic textual similarity, are important for using and understanding
the languages. A recent pre-trained language model called Bidirectional Encoder
Representations from Transformers (BERT) can perform multiple nature language
processing tasks after fine-tuning with simple additional task-specific layers. How-
ever, it is a challenge to train multi-task model with a shared BERT model. In this
report, we aim to improve the BERT-based performance for multi-task learning.
We first completed an implementation of the base BERT model and showed that it
can perform single tasks, namely sentiment analysis. We then applied the BERT
model to multiple tasks with a shared BERT model. We tested different sampling
approaches, concatenating sentence pair as input, non-linear neural network as task-
specific layer, and further pre-training to enhance the multi-task performance. We
are able to achieve SST acc. of 0.528, QQP acc. of 0.886, and STS corr. of 0.875
on the unseen test datasets. Besides focusing on the performance, we assessed the
learning characteristics of sequential learning and pre-training; and analyze the
model predictions in detail to understand the potential causes leading to errors. In
summary, we report here methods that can improve the multi-task fine-tuning with
BERT and potential future directions to further improve the performance.

1 Introduction
Large language model fine-tuning with pre-trained model is an effective way of tackling many natural
language processing tasks. Recent transformer models using attention to learn universal language
representations (Vaswani et al., 2017). BERT integrating context from both left and right enables
it to have a more comprehensive understanding of languages (Devlin et al., 2018). BERT also
demonstrates that a model pre-trained on a large corpus can be relatively readily fine-tuned to create
state-of-the-art models for a wide range of tasks. Here, we apply the BERT model for multi-task
learning.

Multi-Task Learning (MTL) is the process of learning different tasks using a shared representation
(Caruana, 1997) (Liu et al., 2019). MTL can be challenging because gradients from different tasks
may conflict between each other and harm the making progress (Yu et al., 2020). In this project,
we aim to fine-tune the BERT model to perform three tasks, namely sentiment analysis, paraphrase
detection, and semantic textual similarity. This will serve as an example of how to enhance the
pre-trained model to be more generalized to different natural language processing tasks.

2 Related Work

2.1 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) has been pre-trained for masked-
language modeling (MLM) and next sentence prediction (NSP)(Devlin et al., 2018). MLM allows
BERT to understand the relationship between words, while NSP allows BERT to understand the
relationship between adjacent sentences. We are inspired by these approach. We tested whether further
pre-train the model with domain-specific corpus with MLM can help the model better understand the

Stanford CS224N Natural Language Processing with Deep Learning



sentences and enhance the performance. Meanwhile, we reorganized the two sentences of each data
point from QQP and STS to mimic the ones from NSP and asked whether the model can re-purpose
the inputs (especially token type embeddings) of NSP for QQP and STS tasks.

2.2 Square root sampling and anneal sampling

One of the challenge for MTL is that datasets for different tasks can have vastly different sizes. If
training data is sampled proportionally by the dataset size, the model may be trained to bias towards
tasks with a lot more data, causing tasks with less data to be under-trained. A generally used method
to sample the datasets with a probabilities proportional to the dataset size powered by a factor smaller
than 1. A commonly used factor is 0.5 and sampling method can be called "square root sampling".
Stickland has also "annealed sampling" method, where the factor decreases linearly with the increase
of epoch. (Stickland and Murray, 2019) In this case, tasks are trained more equally towards the end
of training, which has shown noticed to be beneficial. We are inspired by their methods and further
combined these two methods to formulate a "min anneal sampling" method.

2.3 Further pre-training

Previous studies suggest that further pre-training can improve the task performance(Sun et al., 2019).
There are three different ways to perform further pre-training on different datasets: Within-task
pre-training (using training data of a target task); In-domain pre-training (using combined training
data from the same domain of a target task); Cross-domain pre-training (using training data from
multiple domains)(Sun et al., 2019). Here, we adapted empirical hyperparameters from previous
studies to do a within-task pre-training (Sun et al., 2019) (Devlin et al., 2018) with some permutations
and asked whether further pre-training can improve our task performance and what is the best way of
further pre-training.

Figure 1: Architecture of baseline (left) and enhanced (right) multi-task BERT model (different
extension methods shown in red box)

3 Approach

3.1 BERT multitask baseline

To apply the BERT model for multitasks, we first use the base BERT pre-trained parameters and add
one additional task specific layer for different tasks (Figure 1). This serves as our baseline. Here, for
the sentiment analysis, we add linear layer with Softmax to the sentence embedding and train with
cross entropy loss for the 5-grain sentiment output. For paraphrase detection, we concatenate the
sentence pairs and feed through a linear layer, and use the binary cross entropy loss for the binary
output. For semantic textual similarity, we also concatenate the sentence pairs and feed through a
linear layer and use mean squared error loss.

2



3.2 Sequential learning and Min anneal sampling

We have two approaches to compare against each other, sequential learning and mixed batch learning.
For sequential learning, we train the model with the full dataset for each task sequentially, in the
order of SST, QQP, and STS. For mixed batch learning, we mixed mini-batches from 3 tasks. We
mixed the datasets by a method combining Square root sampling and anneal sampling. Here, we call
"min annealing sampling". At the beginning of the training, the sampling is scaled with square root
sampling; while at the end of the training, the datasets are sampled more equally. In this way, we
have a overall balanced training across different tasks and even more balanced training at the end of
the training phase.

pi ∝ Nα
i (1)

α = min(0.5, 1− 0.9
epoch

MAXEpoch
) (2)

3.3 Concatenated sentences as input

For the paraphrase detection and semantic textual similarity tasks, it involve the comparison of the
sentence pair. One way of learning is to input the sentences separately and compare their embeddings
in the task-specific layer. Another way of learning is to input the sentences in concatenated manner
and output a single embedding for two sentences for downstream tasks. In principle, this approach
can unleash the ability of BERT to understand the relationship between sentences, instead of solely
taking BERT as a sentence meaning extractor. Specifically, we concatenate the pair of sentences and
delete the [CLS] token of the second sentence to form a input as: [CLS] Sentence A [SEP] Sentence
B [SEP]. In another variation, we hypothesize the model may fail to distinguish two sentences due to
shared token as separation token and end of sentence token. Therefore, we replaced the [CLS] token
of the second sentence as a unused token [unused36] to form a input as: [CLS] Sentence A [SEP]
[unused36] Sentence B [SEP]. Meanwhile, we add a token type id embedding with first sentence type
id as 0 and second sentence type id as 1.

3.4 Non-linear feed-forward layers as task-specific layers

Considering that a single linear layer might not be able to capture more complicated information, we
has tested adding another linear layer and a ReLU activation layer between the BERT last embedding
layer and task-specific output layer which is written as y = ReLU(Wx+ b).

3.5 Further pre-training

Comparing to the general corpus which BERT has been pre-trained on, the datasets we used for
multitask fine-tuning might have different distributions and properties comparing to the general
corpus. Therefore, we tried in-task pre-training, where we further pre-train the model using the three
datasets for the tasks. The pre-training is done with MLM task with the same masking strategy as
orginal BERT pre-training. Each sentence from 3 datasets are randomly mixed with sentence pairs
are separately treated as individual sentences. To find out the best pre-trained model, we save the
further pre-trained model after 3, 18, and 40 Epochs respectively and assess their performance.

4 Experiments

4.1 Data

This project uses Stanford Sentiment Treebankv(SST) (Socher et al., 2013), CFIMDB, Quora dataset
(QQP) (Chen et al., 2018) and SemEval STS Benchmark (Agirre et al., 2013). The information of
them are listed in 1.

4.2 Evaluation method

For the BERT single-tasking, we majorly measure the accuracy. As for the BERT multi-tasking, we
measure the accuracy for the sentiment analysis and paraphrase detection; and the Pearson correlation
for the semantic textual similarity. To evaluate the multi-tasking ability of the model, we also sum

3



Task Dataset Training data Dev data Test data

Sentiment analysis SST 8,544 1,101 2,210
Sentiment analysis CFIMDB 1,701 245 488
Paraphrase detection QQP 283,010 40,429 80,859
Semantic textual similarity STS 6,040 863 1,725

Table 1: Dataset size information for different tasks

up the three metrics: Overall = Average[Acc(SST ) + Acc(QQP ) +
1
2 (1 + Corr(STS))]. We are

focusing on improving the model performance based on these evaluation metrics.

4.3 Experimental details

We used ’bert-base-uncased’ from hugging face as our pre-trained foundation model and tokenizer.
This model has a hidden size of 768, 12 Transformer blocks and 12 self-attention heads. We further
pre-train the model on a NVIDIA T4 with a total of 40 epochs, a batch size of 32, a drop-out rate
of 0.1, AdamW optimizerwith 1 = 0.9 and 2 = 0.999. We used a slanted triangular learning rates
(Howard and Ruder, 2018) with a base learning rate of 5e-5, and first 70000 steps (10%) as warm-up
steps. We fine-tuned this model for our downstream tasks on a NVIDIA T4 with a batch size of
8, learning rate of 1e-5 for full model fine-tuning and 1e-3 for last layer fine-tuning. The dropout
probability is always kept at 0.3. We use AdamW with 1 = 0.9 and 2 = 0.999. We have set the max
number of the epoch to 10. The final evaluation and accuracy shown are based on the best model on
dev set across epochs.

4.4 Results

4.4.1 Single-task learning with the BERT for Sentiment Analysis

To test the performance of using the base BERT model for sentiment analysis, we implement the
pre-trained BERT model and then apply one additional linear layer for fine-tuning for either the last
linear layer of the BERT model or the full BERT model. The accuracies for SST dataset and the
CFIMDB dataset using different fine-tuning modes are shown in the Table 2. Here, we got SST
accuracy being 0.390 with only last layer and 0.516 with full model; CFIMDB accuracy being 0.743
with only last layer and 0.971 with full model. These huge leaps suggest that fine-tuning on the full
model achieve much better performance than only on the last layer. Full model fine-tuning allows all
layers of the BERT model to adapt to the specific task, enabling greater flexibility and capability.

Fine-tuning mode: last linear layer full model

SST 0.390 0.516
CFIMDB 0.743 0.971

Table 2: Performance of sentiment classification tasks with different fine-tuning modes.

4.4.2 Baseline of multi-task learning with BERT

To set up the baseline for multi-task learning of the model, we add single additional layer and
separately fine-tune on last linear layer of the BERT model for each task. After fine-tuning, we get an
accuracy for SST and QQP at around 39% and 65.5% respectively. And we get person’s correlation
for STS at around 0.26 (Table 3). The results suggest that the BERT model is capable of performing
multitasks with the same model set and achieve a performance higher than random. While there is
still lots of room for further improvement.

4.4.3 Mixed mini-batch learning with min anneal sampling outperforms sequential learning

As indicated with the single-task fine-tuning, we hypothesize that fine-tuning on the full model
will give a better performance. To enable full model fine-tuning, we came up with two different
approaches, sequential learning or mixed mini-batch learning. With sequential learning, we observed
fluctuation of accuracy during the training process, indicating an interference among different tasks
(Figure 2a). However, the performance tends to converge, suggesting that sequential learning can

4



efficiently train a multi-task model. While, as expected, the mixed mini-batch learning has a smooth
path towards convergence (Figure 2b). In both cases, we observe a strong over-fitting, where the
training datasets have very high accuracies/correlation and much higher than the dev sets. Comparing
two methods, mixed mini-batch learning has slightly better performance and slightly less over-fitting.
Therefore, we carried mixed mini-batch learning forward. This better performance can be from the
mixed mini-batch approach, which avoids continuously over-writing; but can also be from the min
anneal sampling, which trains different task in a more balanced manner.

(a) BERT full-model + sequential learning (b) BERT full-model + Mixed mini-batch learning
Figure 2: Performance metrics by Epoch for different tasks with two full model fine-tuning methods

4.4.4 Two sentences concatenated as input strongly boosts performance

Since the above model has worst performance on the STS task, we sought to improve on this task.
We hypothesize that the above model we have implemented has treated pre-trained BERT model
largely as a sentence meaning extractor. Therefore, we would like to test whether feeding the pair
of two sentences in concatenated manner and doing downstream task with the last hidden layer
embedding can increase the performance of sentence pair task. In practice, we have implemented two
approaches, one simply concatenating two sentences, and another one further adding a unused token
to separate two sentences and token type embedding. First of all, this is the most effective approach
we implemented to improve the performance. We observe that QQP accuracy increases from 0.778 to
0.879 and STS correlation from 0.376 to 0.867, along with a slight decrease of SST from 0.51 to 0.507
(Table 3). This result indeed supports our hypothesis. Comparing the two approaches (both with
further pre-trained model), we found that QQP acc. and STS corr. have slightly increase, 0.002 and
0.006 respectively, along with again a decrease of the SST task (Table 3). This result also supports
our idea that more information indicating individual sentence can improve the model performance on
sentence pair tasks. However, in both cases, we found that asking the model to look at or focus on
two sentences may interfere the performance of one sentence task.

4.4.5 Non-linear feed-forward layers as last task-specific layers improves the performance

To further improve the performance, we hypothesize that using only one linear layer as the last
task-specific layers may lead to lack of complexity and capacity. Therefore, we tested our idea by
inducing non-linear neural networks, ReLU between two linear layers here. We implemented this
method on top of our model with simple sentence concatenation. We found that it increase QQP acc.
by 0.012 and STS corr. by 0.016 with a slight decrease of SST acc. by 0.002 (Table 3). This indicates
that the model fine-tuning can benefit from more sophisticated task-specific layers.

4.4.6 Further pre-training improves the performance

Further pre-training with in-domain or in-task data has been shown to be beneficial to task-specific
fine-tuning. Therefore, we further pre-trained the model on the datasets of the three tasks with
MLM task, in order to allow the model better understand the meaning the task-specific content. To
assess how well the model learns during the further pre-training, we track the training loss and dev
loss over 40 Epochs. Results suggest that both the train and dev loss linearly decrease throughout
the whole pre-training phase (Figure 3), indicating a continous learning without significant over-
fitting. Furthermore, we would like to test whether pre-training with over epochs can provide more
performance boost. We applied the models after 3, 18, and 40 Epochs to fine-tuning. We found that
the model with 3 pre-training epochs provides a significant increase to the performance across all

5



Model SST
Acc

QQP
Acc

STS
Corr

Overall

BERT baseline (final layer) 0.391 0.655 0.262 0.559
BERT full-model + sequential learning 0.512 0.788 0.330 0.655
BERT full-model + Min anneal sampling 0.510 0.778 0.376 0.659
BERT full-model + Min anneal sampling + concatenate 0.507 0.879 0.867 0.773

BERT full-model + Min anneal sampling + concatenate
+ further pre-train (Epoch = 3) 0.519 0.886 0.876 0.781

BERT full-model + Min anneal sampling + concatenate
+ further pre-train (Epoch = 18) 0.493 0.875 0.844 0.763

BERT full-model + Min anneal sampling + concatenate
+ further pre-train (Epoch = 40) 0.495 0.876 0.852 0.765

BERT full-model + Min anneal sampling + concatenate
+ type emb + further pre-train (Epoch = 3) 0.510 0.888 0.882 0.780

BERT full-model + Min anneal sampling + concatenate
+ ReLU 0.505 0.891 0.883 0.779

BERT full-model + Min anneal sampling + concatenate
+ ReLU + type emb + further pre-train (Epoch = 3) 0.522 0.886 0.883 0.783

BERT full-model + Min anneal sampling + concatenate
+ ReLU + further pre-train (Epoch = 40) 0.492 0.883 0.855 0.768

Test set BERT full-model + Min anneal sampling + concatenate
+ ReLU + type emb + further pre-train (Epoch = 3) 0.528 0.886 0.875 0.783

Table 3: Performance matrics comparison of different models

three tasks, SST acc. by 0.012, QQP acc. by 0.007, and STS corr. by 0.009 (Table 3). However,
unexpectedly, we found that models with 18 and 50 pre-training epochs significantly decrease the
fine-tuning performance.This suggests that further pre-training can help fine-tuning when properly
done.

Figure 3: Further pre-training show decrease of train (left) and dev (right) loss over 40 Epochs

5 Analysis

5.1 Analysis for sentiment classification

When doing single-task fine-tuning for sentiment classification, the model performance on the
CFIMDB dataset is better than SST dataset. The different characteristics and distributions of the
dataset might lead to this result. This is probably because SST is 5-grain classification task while
CFIMDB is a binary task. It is challenging for the model to distinguish the ambiguous classifications.

To evaluate the performance of our model on sentiment classification and check whether the error
is due to the ambiguity, we generate the confusion matrix (Figure 4). The majority of the mistakes
made by the model are one class away from the true value, suggesting the decent performance of
the model. When comparing the error rate for different classes, neutral sentences seem to have

6



highest error rate, potentially due to the ambiguity. Besides neutral sentences, "somewhat positive"
and "somewhat negative" have more examples and higher accuracy compared with "positive" and
"negative" sentences. This indicates that the imbalance of dataset may be a cause of misclassifying
"positive" and "negative" sentences.

Figure 4: Confusion matrix for SST (left) and QQP (right)

5.2 Analysis for paraphrase detection

For the paraphrase detection task, the number of false-negative rate (˜ 20%, predicted negatives by
all positives) is higher than false-positive rate (˜ 10%, predicted positives by all negatives) (Figure
4). Here, we observe an imbalance distribution in the dataset as there are twice more negatives
(non-paraphrase sentence pairs) than positives (paraphrase sentence pairs). To better understand why
the model make wrong predictions, we take a closer look at the false-positive and false-negative
examples (Table 4). We observed different patterns of mistakes. Firstly, the model makes a clear
misunderstanding of the sentences. When the sentence pair share similar key words, the model predict
them as paraphrase even though their meaning is different (for example sentence 3). Secondly, some
sentence pairs are paraphrase to some extent. When we asked different people to label the example,
human opinions cannot agree with each other (data not shown). Therefore, these examples can also
be a grey area for the model to predict (for example sentence 1 and 4). Thirdly, in some cases, the
true label is incorrectly label (for example sentence 2). Out of these cases, only the scenario can be
potentially improved with the model.

Sentence 1 Sentence 2 True Predict

1 What is Shaoxing vinegar? What is Shaoxing vinegar used for? 1 0
2 Does homeopathic medicine work? What is homeopathy? How does it

work?
1 0

3 How long will Quora exist? How long has Quora existed? 0 1
4 Who is your favorite model? Who are your favorite models? 0 1

Table 4: Example of sentence pairs with wrong model detection

5.3 Analysis for semantic textual similarity

Here, we plotted predicted values against true values. This plot suggests that the predicted values
are very close to the true values, mostly within +1 and -1 range. We further explored whether the
differences between the true and predicted similarity is related to the length of the sentence pairs
(Figure 5) or the sentence length differences in the pairs (data not shown). However, we don’t find
any obvious correlations, suggesting the model is robust to sentences of different length.

We further checked the cases with the biggest discrepancy between the true and predicted similarity
(Table 5). Firstly, when one sentence has a lot more details. The model can underestimate the
similarity (for example sentence 1). Secondly, when the sentence has abbreviations, the model
cannot associate them with the full name (for example sentence 2). Thirdly, we found that when two

7



Figure 5: Analysis for the performance of SST on dev set. Left: scatter plot for true value v.s.
predicted value. Right: scatter plot for (true value - predicted value) v.s. sentence length

short sentences shared a lot of key words, the model may overestimate the similarity even when the
meaning is actually opposite (for example sentence 3 and 4).

Sentence 1 Sentence 2 True Predict

1 In these days of googling, it’s sloppy
to not find the source of a quotation.

I agree with Kate Sherwood, you
should be able to attribute most
quotes these days by simple fact
checking.

3.2 1.0

2 Carney sets high bar to change at
BoE

Carney sets high bar to changes at
Bank of England

5 2.8

3 Work into it slowly. It seems to work. 0 2.5
4 Indian stocks open lower Indian stocks close lower 1.8 4.4

Table 5: Example of sentence pairs with largest difference between model prediction and true
similarity

6 Conclusion
Large language model fine-tuning with pre-trained model is an effective way of tackling many natural
language processing tasks. In this report, we improve the BERT-based performance for multi-task
learning with various approaches.

We have come up with a "min anneal sampling" method to mix mini-batches for the multi-task
fine-tuning. We found concatenating sentence pair as input is the most effective way to improve
the model performance on sentence pair tasks. We reason that this approach unleash the capability
of BERT model to understand the relationship between the two, instead of taking the BERT model
solely as a sentence meaning extractor. In addition, we found using non-linear neural network as
task-specific layer can further improve the model performance. We reason that this approach increases
the complexity and capacity of the task-specific layers. We also tested whether and how further
in-task pre-training can improve the performance. We show that further pre-trained model with
low number of epochs can improve the downstream task performance. Combining these effective
methods, we are able to achieve SST acc. of 0.528, QQP acc. of 0.886, and STS corr. of 0.875 on
the unseen test dataset. We have also tried sequential learning and found the model would seriously
over-fit. And we found that training loss and dev loss can decrease linearly during the pre-training
throughout 40 epochs.

In the end, we analyze the model predictions in depth to understand the potential causes leading to
errors. Overall, we show that the incorrect predicted values are mostly close the true value. Part
of the inaccuracy can be attributed to the imbalance of the dataset. Part can be due to ambiguity of
some data where different human may have different opinions. Surprisingly, we also found some
incorrectly labeled data in the QQP dataset, highlighting the importance of data quality in model
evaluation. In summary, we report here methods that can improve the multi- task fine-tuning with
BERT and potential future directions to further improve the performance.

8



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Rich Caruana. 1997. Multitask learning. Machine learning, 28:41–75.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. 2018. Quora question pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classifica-
tion. arXiv preprint arXiv:1801.06146.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. arXiv preprint arXiv:1901.11504.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986–5995. PMLR.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classifica-
tion? In Chinese computational linguistics: 18th China national conference, CCL 2019, Kunming,
China, October 18–20, 2019, proceedings 18, pages 194–206. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

9


	Introduction
	Related Work
	Bidirectional Encoder Representations from Transformers
	Square root sampling and anneal sampling
	Further pre-training

	Approach
	BERT multitask baseline
	Sequential learning and Min anneal sampling
	Concatenated sentences as input
	Non-linear feed-forward layers as task-specific layers
	Further pre-training

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Single-task learning with the BERT for Sentiment Analysis
	Baseline of multi-task learning with BERT
	Mixed mini-batch learning with min anneal sampling outperforms sequential learning
	Two sentences concatenated as input strongly boosts performance
	Non-linear feed-forward layers as last task-specific layers improves the performance
	Further pre-training improves the performance


	Analysis
	Analysis for sentiment classification
	Analysis for paraphrase detection
	Analysis for semantic textual similarity

	Conclusion

