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Abstract

This project introduces minBERT, a tailored version of the ‘bert-base-uncased’
model, optimized for multi-task learning across three pivotal NLP tasks: Sentiment
Analysis, Paraphrase Detection, and Semantic Textual Similarity. By refining the
architecture and employing sophisticated pre-training techniques, we enhance the
model’s performance on these tasks. Specifically, we explore various architectural
adjustments such as different headers for each task and advanced pooling meth-
ods. We also implement a strategic pre-training regimen that includes within-task,
cross-domain, and staged pre-training approaches to optimize task-specific per-
formance. Our experimental results demonstrate significant improvements over
baseline models, achieving 53.8% accuracy in Sentiment Analysis, 89.2% in Para-
phrase Detection, and a 0.774 Pearson correlation in Semantic Textual Similarity.
These outcomes underscore the potential of targeted optimizations in transforming
the capabilities of standard language models for specialized tasks.

1 Key Information to include

• Mentor: Aditya Agrawal • No External Collaborators • Not Share Project Across Classes

2 Introduction

In the realm of Natural Language Processing (NLP), the development of models that can comprehend
and interpret human language with sophisticated understanding remains a pivotal challenge. The ad-
vent of transformer [1]-based BERT (Bidirectional Encoder Representations from Transformers) [2],
has significantly advanced the state-of-the-art, offering a pre-trained model capable of capturing the
nuanced contextual relationships within text.

This project explores the implementation and fine-tuning of minBERT across three critical NLP tasks:
Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity (STS). Our initiative,
dubbed minBERT, refines the ‘bert-base-uncased’ model through targeted architectural modifications
and optimized further pre-training strategies. These enhancements are designed to improve the
model’s efficiency and effectiveness across the designated tasks, achieving test accuracy of 53.8% in
Sentiment Analysis, 89.2% in Paraphrase Detection, and 0.774 Pearson correlation in STS.

3 Related Work

The foundational architecture of our work, BERT, has revolutionized NLP through its deep contextu-
alized training, as established by Devlin et al. (2018) [2]. It has set benchmarks across various NLP
applications, laying the groundwork for task-specific adaptations. Pertinent to our enhancements are
studies like those by Sun et al. (2019) [3], which underscore the necessity of task-adaptive training
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and fine-tuning methodologies to amplify BERT’s performance specifically. These modifications
are crucial for multi-task applications as they allow for nuanced training that aligns closely with
task-specific requirements. Additionally, the works of Reimers and Gurevych (2019) [4] on siamese
BERT-networks have informed our approach to semantic similarity, optimizing the way our model
processes and understands sentence relationships. Moreover, Loshchilov and Hutter’s (2019) [5]
insights into decoupled weight decay regularization have been instrumental in refining our training
regime to prevent overfitting while maintaining training efficiency. Our research builds on these
critical insights, pushing the boundaries of task-specific performance while maintaining the model’s
adaptability for multi-task learning, aiming to mitigate the noted limitations of prior models and
extend their applicability to more specialized or restricted-resource environments.

4 Approach

To enhance the minBERT model for multitask learning, our methodology was bifurcated into two
primary strategies: intricate model architecture modifications [4] and advanced pre-training protocols.

Model Architecture [6]. The base for our experiments was the ‘bert-base-uncased’ model, which
we adapted to each specific task by integrating distinct headers designed to process and interpret the
representations provided by minBERT effectively (Figure 1).

Figure 1: Model architecture: baseline (left) and improvement (right)

1. Sentiment Classification: This task necessitated a quinary classification layer where the
output header comprises a single linear layer for generating logits, subsequently processed by
a softmax function to derive the final class probabilities. The softmax function is articulated:

Softmax(xi) =
exi∑n
j=1 e

xj
(1)

2. Paraphrase Detection: Multiple architectures were scrutinized for this binary classifier:
(a) Similar to the sentiment classifier, a simple linear layer directly producing logits.

σ(x) =
1

1 + e−x
(2)

(b) Cosine similarity for measuring the direct similarity between sentence embeddings.

Cosine_Similarity(A,B) =
A ·B

∥A∥∥B∥
(3)
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(c) An amalgamation of absolute difference and element-wise product of embeddings,
which generated the best results by capturing both contrastive and corroborative features
between sentences, expressed by:

D = |A−B| (4)

P = A⊙B (5)

3. Semantic Textual Similarity (STS): This regression task aims to quantify sentence pair
similarity on a scale from 0 to 5, based on their semantic similarity. Cosine similarity was
deemed most efficacious, aligning with contemporary research that underscores its utility in
capturing semantic nuances across diverse contexts.

In addition to header configurations, embedding processing techniques were also explored:

1. Direct utilization of minBERT’s output embeddings.

2. Implementation of mean and max pooling methods, with mean pooling providing superior
performance by offering a more uniform and comprehensive representation.

pmean =
1

n

n∑
i=1

xi (6)

pmax[j] = max(x1[j], x2[j], . . . , xn[j]) (7)

Further Pre-training [3]. Fine-tuning regimen incorporated multi-staged and domain-specific
strategies:

1. Within-task: Concentrating on enhancing the model’s acuity to each task’s unique nuances.

2. Cross-domain: Boosting the model’s generalization capabilities across related tasks.

3. In-domain with staged training: Sequential training starting with tasks that share more in
common, progressively moving to more distinct tasks. This approach proved particularly
beneficial, aligning the model’s internal representations with the semantic requirements of
each task in a graduated manner (Figure 2).

Figure 2: Three-staged in-domain training

Regularization Techniques. To curb overfitting and foster robust generalization, we implemented:

1. Decoupled weight decay regularization [5]: This method helps in refining the model
without conflating the effects of weight decay with other aspects of the optimization process.

2. Bregman projections in AdamW [7] optimizer: This novel approach that ensures the opti-
mizer’s steps are both effective in reducing loss and stable enough to maintain performance
across varied epochs and batches.

AdamW: θt+1 = θt − η

(
m̂t√
v̂t + ϵ

+ λθt

)
(8)

Adj. AdamW w/ Bregman: θ′t+1 = argmin
u∈C

1

2
∥u− (θt − η · ( m̂t√

v̂t + ϵ
+ λθt))∥2 (9)

Our approach, by marrying sophisticated architectural modifications with cutting-edge training
methodologies, aims to optimize task-specific efficacy while preserving the flexibility requisite.
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5 Experiments

5.1 Data

Since we are doing the Default Final Project (DFP), our experiments utilized the provided Stanford
Sentiment Treebank (SST) [8] dataset for Sentiment Analysis, Quora dataset for Paraphrase Detec-
tion [9], and SemEval dataset for Semantic Textual Similarity (STS) [10]. No additional dataset was
involved for our project, and the basic data distribution as below.

Figure 3: Data Distribution of Stanford Sentiment Treebank (SST)

Figure 4: Data Distribution of Quora

Figure 5: Data Distribution of SemEval (STS)
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5.2 Evaluation method

Evaluation method is pre-determined in DFP, and so our project uses classification accuracy for
Sentiment Analysis, binary prediction accuracy for Paragraph Detection, and Pearson correlation for
Semantic Textual Similarity.

5.3 Experimental details

Our experiments were conducted using the ’bert-base-uncased’ model as the foundational architecture.
Learning rate is set up 1e− 05 initially and adjusting dynamically during the training. Batch size is
set to 8 and the number of epoch is 15. Also, we applied Bregman projections (βproximal = 0.01)
within the AdamW optimizer (β1 = 0.9, β2 = 0.999) and utilized weight decay (0.1) as part of our
regularization strategy.

5.4 Results

The model architecture combining linear layers (Sentiment Classification) with difference-product
(Paraphrase Detection) and cosine similarity (Semantic Textual Similarity) operations, enhanced
by mean pooling, showed significant improvements across all tasks when compared to the baseline.
Additionally, this architecture was further enhanced through staged pre-training and rigorous regu-
larization techniques. The results are summarized in Table 1, which details the performance across
various configurations and training stages.

1. Baseline Performance: As discussed, we use linear combo and dot-product for the baseline
model structure, directly using minBERT’s output, without any pre-training. In Table 1,
we can see that the sentiment classifier reaches the accuracy of only 14.4%. This low
baseline accuracy indicates significant challenges in handling sentiment classification with
the initial model setup, potentially due to inadequate feature extraction or poor generalization
from minBERT’s pre-training data. Paraphrase detection’s baseline accuracy is 36.9%, this
moderate number suggests some capability to understand textual similarities but lacking
precision and robust differentiation between nuanced text pairs. STS shows the extremely
low correlation for the baseline, 0.075, indicating almost negligible effectiveness in capturing
and scoring semantic relationships accurately.

2. Impact of Model Architecture Enhancements: Applied mean pooling without further pre-
training, we updated each header. For sentiment header, we found that the additional layer
helps to improve the accuracy to 24.3%, almost 10% higher than the baseline, showcasing
the effectiveness of the newly integrated linear layers in enhancing feature discrimination.
Paraphrase header has been updated to use difference-product algorithm, pushing the
accuracy to over 60%. This improvement enhanced the model’s ability to capture essential
features indicative of paraphrases. With the addition of cosine similarity in the architecture,
the STS layer returned the correlation of 0.533, which demonstrated a substantial increase
in correlation, reflecting improved alignment with human judgment on semantic similarities.

3. Benefits of Further Pre-training w/ Regularization: Using 3-stage in-domain pre-training,
with appropriate regularization techniques of Bregman and weight-decay learning rate, in
the test dataset, we achieved 53.8% accuracy for sentiment classification, 89.2% accuracy
for paraphrase detection, and 0.774 Pearson correlation for semantic textual similarity. All
illustrated the profound impact of targeted pre-training in enhancing the model’s ability.

Model Architecture Pre-train Baseline SST Accuracy Para Accuracy STS Correlation
Linear+Linear+Dot-Product, bert N.A. Y 0.144 0.369 0.075

Linear+DifProd+CosSim, mp N.A. dev 0.243 0.608 0.533
Linear+DifProd+CosSim, mp Para Only dev 0.202 0.899 0.745
Linear+DifProd+CosSim, mp 3-stage dev 0.530 0.894 0.606
Linear+DifProd+CosSim, mp 3-stage, reg dev 0.548 0.894 0.776
Linear+DifProd+CosSim, mp 3-stage, reg test 0.538 0.892 0.774

Table 1: Model performance
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6 Analysis

We created confusion matrix for Sentiment Analysis / Paraphrase Detection, and scatter plot for
Semantic Textual Similarity, baseline result in Figure 6, architecture result in Figure 7, and the final
result in Figure 8.

In Sentiment Analysis, the confusion matrix from the baseline model shows a strong bias towards
predicting extreme sentiments, either highly positive or highly negative, suggesting that the model
was overly sensitive to more expressive language and often ignored subtler cues of sentiment. In
contrast, the final results display a more balanced prediction across all sentiment classes. Notably,
the correct predictions for neutral sentiments (class 2) and somewhat positive sentiments (class 3)
have improved significantly. This indicates that the enhancements in model architecture and training
methodology helped mitigate the initial bias towards extreme sentiments.

For Paraphrase Detection, the baseline model frequently predicted non-paraphrases over paraphrases,
possibly indicating an initial conservative classification stance, where clearer signals of similarity
were required to classify pairs as paraphrases. The final confusion matrix reveals a more balanced
approach with improved detection of paraphrases, suggesting that our adjustments, particularly the
use of absolute differences and product of embeddings, provided a more nuanced understanding of
semantic similarities and differences, enhancing the model’s ability to correctly classify paraphrases.

In the task of Semantic Textual Similarity, the baseline scatter plot shows a clustered distribution
of similarity scores around the lower scores, indicating a poor correlation between predicted and
actual similarity scores. The final scatter plot, however, exhibits a broader and more upward-trending
distribution of data points across the similarity scale. This change implies a significant improvement
in the model’s ability to assess and score textual similarity across a wider range of values, reflecting a
more accurate understanding of nuanced semantic relationships.

Figure 6: Baseline confusion matrix and scatter plot

Figure 7: Architecture-only confusion matrix and scatter plot

6



Figure 8: Final confusion matrix and scatter plot

7 Conclusion

Our project successfully demonstrated the effectiveness of a multitask learning approach using a
minimally modified BERT architecture to address three distinct NLP tasks: Sentiment Analysis,
Paraphrase Detection, and Semantic Textual Similarity. By leveraging the ‘bert-base-uncased’ model,
fine-tuned with task-specific adjustments in model architecture and training processes, our system
achieved noteworthy improvements over baseline models on all evaluated tasks.

We learned that refining the model’s architecture by integrating task-specific headers and employing
different embedding pooling strategies (mean and max pooling) critically improved the model’s
ability to discern and predict nuanced linguistic features. The adoption of mean pooling, in particular,
proved effective in capturing sentence-level semantic nuances, which was especially beneficial for
the STS task.

Our achievements are underscored by the substantial improvements in model performance. For
Sentiment Analysis, adjustments to the model’s sensitivity to varying sentiment intensities led
to more balanced accuracy across sentiment classes. In Paraphrase Detection, the introduction of
composite embeddings (absolute differences and products) enabled the model to better gauge semantic
equivalence. For the Semantic Textual Similarity task, enhancements in embedding processing
facilitated a finer-grained similarity assessment, as evidenced by the expanded and upward-trending
scatter of similarity scores.

Despite these successes, the project has limitations. The reliance on a single pre-trained model base
may restrict the generalizability of our findings across other BERT-like architectures. Additionally,
while improvements were significant, the absolute performance levels, particularly in finer-grained
sentiment detection, suggest there remains room for optimization.

Future work could explore the integration of alternative contextual embedding techniques and the
application of more sophisticated neural network layers specific to each task to further refine the
understanding and processing of task-specific features. Investigating the effects of training with
larger, more diverse datasets or implementing advanced regularization techniques might also yield
further improvements. Moreover, expanding this approach to multilingual datasets could enhance the
model’s applicability and robustness in global NLP applications.

8 Ethics Statement

The deployment of NLP models like ours, which are designed to perform tasks such as Sentiment
Analysis, Paraphrase Detection, and Semantic Textual Similarity, raises specific ethical challenges
and societal risks.

1. Bias Propagation, in Sentiment Analysis:

(a) Problem: Our sentiment analysis model has demonstrated a tendency to propagate
bias present in the training data, where categories 1 and 3 are over-represented (Figure
3). In our final model result, this has led to higher prediction accuracies in these
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categories—69.9% for category 1 and 65.95% for category 3—compared to signif-
icantly lower accuracies in categories 0 and 5, and less than 30% for category 2
(calculated based on the confusion matrix in Figure 8). Such disparities can skew
the model’s application in real-world scenarios, disproportionately favoring certain
sentiments and potentially leading to unfair outcomes

(b) Mitigation: Enriching the training dataset with more diverse examples across all
categories would be a good way. Or, we can apply data augmentation methods to
balance class representation, such as over-sampling the classes 0, 2 and 5.

2. Misuse, of Paraphrase and Semantic Textual Similarity Tools:
(a) Problem: The paraphrase detection capabilities of our model, which achieve around

90% accuracy, pose a risk of facilitating academic dishonesty. Users could potentially
exploit the model’s error margin to manipulate texts just enough to evade plagiarism
detection systems, thereby compromising academic integrity. Similarly, our seman-
tic textual similarity model tends to overestimate the similarity scores, inaccurately
predicting scores as high as 2 to 3.5 for pairs that should have an actual similarity of
0. Such inaccuracies can be exploited to craft misleading content that appears closely
aligned with credible sources, thereby facilitating the spread of misinformation.

(b) Mitigation: To mitigate these kinds of issues, digital watermarking is a good choice
because it provides a means to trace the origin of altered content. Making users aware
of the consequences of misuse, both from ethical and legal perspectives, should also
help to mitigate this problem, so related education is needed.
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