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GUIDO GOVERNATORI and ANTONINO ROTOLO

ON THE AXIOMATISATION OF ELGESEM’S LOGIC OF AGENCY
AND ABILITY

ABSTRACT. In this paper we show that the Hilbert system of agency and ability presented
by Dag Elgesem is incomplete with respect to the intended semantics. We argue that com-
pleteness result may be easily regained. Finally, we shortly discuss some issues related
to the philosophical intuition behind his approach. This is done by examining Elgesem’s
modal logic of agency and ability using semantics with different flavours.

1. INTRODUCTION

Modal logic of agency is a traditional research field in philosophical logic
(for a modern history of this field see [32]). Roughly speaking, the ap-
proach adopts the general policy to abstract from making explicit state
changes and from considering the temporal dimension in describing ac-
tions. In fact, actions are simply taken to be relationships between agents
and states of affairs. Thus, the conceptual qualification of these relations is
made by using suitable modal operators to represent, for example, that an
agent “brings it about” or “sees to it” that A, or that such agent is “able” to
realise A, or again that she “attempts” to achieve it.

It is well known that modal logic of agency has a number of drawbacks.
As recently summarised in [33], the main limit of this approach, as found
in the literature, is that it is “too abstract”. For example, it does not usually
capture the difference between the modal qualifications “sees to it” and
“brings it about”. Both expressions are in general represented by modal
operators with the same logical properties, despite the fact that the former
exhibits a clear intentional character, whereas the latter may refer as well
to unintentional actions [15]; thus the addition of a modal operator for
intention is required to disambiguate the two readings [13].

Secondly, for the purpose of analysing the structure of multi-agent con-
texts it is crucial to distinguish between direct actions and indirect actions.
This is necessary, for example, to account for the notions of influence and
control of an agent over other agents [18, 19, 28, 29]. While these problems
may be, or have been, solved by providing suitable integrations and new
operators within the same paradigm of modal logic of agency, a last draw-
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back is inherent in the paradigm as such. In fact, “sometimes it is essential
to be able to refer to the means by which an agent brings about a state of af-
fairs”, as for example by referring to specific actions performed to achieve
a goal [33]. As is well known, this shows that modal logic of agency
is less expressive than other formal theories of action, such as dynamic
logics. On the other hand, this last limit is also an advantage. Although the
abstractness of modal logic of agency does not make the language very
expressive in itself, it allows flexibility for the easy combination of agency
with a number of other concepts, such as powers, obligations, beliefs, etc.,
in a multi-modal setting. This perhaps explains why the approach has been
recently used to analyse some crucial aspects of normative and institutional
domains (see, e.g., [5, 11, 12, 18, 19, 28, 29]).

The formal properties of modal logic of agency have been extensively
investigated, and a number of variants and axiomatisations can be found
in literature (see, e.g., [2, 3, 6, 8, 9, 17, 26–29, 31, 32]). Despite this great
variety, it is possible to identify a minimal core of axioms that seem to
characterise indisputably some aspects of agency. The recent contributions
by Dag Elgesem are meant to work in this direction [8, 9].

The paper is organised as follows: in Section 2 we rehearse the basic no-
tions for a modal logic of agency and ability; then in Section 3 we present
the account given by Elgesem: in particular we will introduce the class of
selection function models proposed by Elgesem to explain, semantically,
the notions of agency and ability based on a goal directed interpretation of
such concepts; we also discuss the corresponding axiomatisation. As we
will see, the semantics validates the formula ¬C⊥, whose interpretation is
that no agent has the ability to realise the impossible. However, in Section 5
we show that ¬C⊥ cannot be derived from the axiom system presented in
Section 3. To this end, we introduce neighbourhood semantics, we prove
that there is a class of neighbourhood models characterising the axiom
system, and we build a model falsifying ¬C⊥. As a consequence, the pro-
posed axiomatisation is incomplete with respect to the intended semantics.
Moreover we give conditions to transform a neighbourhood model into
an equivalent selection function model and the other way around. It turns
out that we can restore completeness by adding ¬C⊥ as an additional
axiom. This leaves us with two logics: one with ¬C⊥ and one without it.
Accordingly, we discuss, in Section 4, some philosophical issues related
to the interpretation of the notion of ability when one accepts or rejects
the above formula. Since both logics are intuitively acceptable given the
proper interpretations, in Section 6 we investigate whether it is possible to
regain completeness for the logic without ¬C⊥ using the type of models
proposed by Elgesem. To this end we have to introduce, in an implicit man-
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ner, non-normal possible worlds (i.e., worlds with “special” conditions to
evaluate formulas). As we will argue this is against the very own idea of the
neighbourhood and selection function semantics; thus in Section 7 we de-
velop a new type of relational (Kripke-style) possible world semantics with
non-normal worlds, and we prove soundness and completeness for the two
logics of agency and ability with respect to this semantics. We conclude
the paper (Section 8) with a brief discussion about the choice of semantics
for modal logics and we give some hints for further philosophical and
technical investigations.

The focal point of the paper revolves around the incompleteness of the
logic proposed by Elgesem with respect to the intended semantics. This has
interesting ramifications on both philosophical and technical issues. Philo-
sophically our analysis may shed light on different meanings of agency
while, technically, it opens questions on the intuitive appeal of different
types of possible world semantics.

2. MODAL LOGIC OF AGENCY AND ABILITY

We will focus here on two praxeological notions among those considered
by Elgesem.1 The first is the idea of personal and direct action to realise
a state of affairs. In the mentioned general view, this idea is formalised
by the well-known modal operator E, such that a formula like EiA means
that the agent i brings it about that A. Elgesem’s logic of E is a classical
non-normal system [7], namely is closed under logical equivalence, and is
characterised by the following schemas.

EiA→ A(1)

(1) is recognised as valid by almost all theories of agency. It is nothing but
the usual axiom T of modal logic, and it expresses the successfulness of
actions that is behind the common reading of “bring about” concept.

¬Ei#(2)

The axiom (2), also named No, is used to capture the very concept of
agency at hand, according to which the occurrence of any state of affairs,
in the scope of Ei , is the (causal) result of an action of i. In other words,
if i had not behaved in the way she did, the world might have been dif-
ferent. This means that an agent i can only realise something which is
potentially avoidable. In this perspective, no agent can bring about what is
logically unavoidable. Accordingly # cannot be realised with any contri-
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bution of i because its occurrence is (causally) independent of any action
of i.

(EiA ∧ EiB)→ Ei(A ∧ B)(3)

This third schema, C or Agglomeration, follows from the co-temporality of
actions implicitly assumed within the paradigm of modal logic of agency.
In fact, if the agent i realises A and B, presumably by performing two
distinct actions, it can be also said that i brings it about that A ∧ B only
if the two actions have been performed at the same time. As it is argued
by Elgesem, however, the converse of (3) must be rejected because, in
presence of it, substitution of equivalents (i) plus (2) make the logic incon-
sistent whenever at least one action is performed, (ii) gives the usual rule
RM (% A→ B/ % !A→ !B), which is not acceptable in the logic for E
[8, 9].

Notice that this minimal core of principles has been recognised also
by [28, 29]. The main difference between them and Elgesem regards the
characterisation of the interplay and influence between more agents. In
[28, 29] it is accepted

EiEjA→ ¬EiA(4)

to emphasise that a formula like EiA strongly expresses the idea that the
agent i brings it about that A directly and personally: If i makes so that
j brings it about that A, then it is not possible to say that i realises A,
since such a state of affairs is achieved directly by j . More weakly, but in
a similar perspective, Elgesem simply rejects the schema

EiEjA→ EiA(5)

which is adopted, for example, by Chellas [6].
The second praxeological concept, analysed by Elgesem and consid-

ered here, is agents’ “practical ability” to realise states of affairs. This
praxeological qualification is represented by the modal operator C. Ac-
cordingly, CiA expresses that i is capable of realising A. The logic for
C is quite weak. It is closed as well under logical equivalence and is
characterised by the following principles.

EiA→ CiA(6)

This schema states a strong connection between ability and agency: If i
realises successfully A, it is obvious that i is able to do this.

¬Ci#(7)
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This last axiom is the natural counterpart of schema (2) for E. As we have
alluded to, both express jointly the idea of avoidability, namely that the
occurrence of a state of affairs cannot be caused by one agent if the goal
obtains in every state of the world.2

In the next sections we will analyse some aspects of Elgesem’s seman-
tics for the above operators. The focus will be then on a decisive, but quite
solvable, problem arising from his own semantic characterisation of the
logic of agency and ability.

3. AN AXIOMATISATION FOR AGENCY AND ABILITY

Elgesem’s analysis starts from semantical considerations [8, 9]. His aim
is to give a fresh account of Sommerhoff ’s theory of goal-directness. The
semantics is given in terms of selection function models, where a selection
function model E is a structure

〈W, f, v〉(8)

where W is a (non-empty) set of possible worlds, f is a selection function
with signature P(W)×W )→P(W), and v assigns to each propositional
letter a subset of W .3

Each formula corresponds to a set of worlds, the set of worlds where
it is true, and a world describes the formulas true at it; thus a formula
corresponds to a state of affairs, and it determines all worlds where the
state of affairs is true. The selection function identifies then the worlds
relative to the actual world where a goal (state of affairs) has been realised.

For convenience, before providing the valuation clauses for the formu-
las, we define the notion of truth set, i.e., the set of worlds where a formula
is true.

DEFINITION 1. Let M be a model and A be a formula. The truth set of
A wrt to M , ‖A‖M is thus defined:

‖A‖M = {w ∈ W : w "M A}.
An Elgesem model is a selection function model E satisfying the following
valuation clauses (from now on, whenever clear from the context we drop
subscripts and superscripts):

S1. w "E p iff w ∈ v(p);
S2. w "E ¬A iff w !E A;
S3. w "E A→ B iff w !E A or w "E B;
S4. w "E EA iff w ∈ f (‖A‖E , w);
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S5. w "E CA iff f (‖A‖E , w) ,= 0.

The notion of truth in a model and validity are defined as usual.
It is immediate to see that (S4) and (S5) together imply the validity

of (6), namely

EA→ CA.

Notice that Elgesem uses only one selection function to represent the two
modal operators E and C. This is crucial in his philosophical approach to
agency because f (‖A‖, w) corresponds exactly to the set of worlds where
an agent realises her ability, relative to the actual world w, to bring about
the goal A. In this perspective, ability and agency are two facets of the
same general concept.

Then Elgesem goes on and discusses the conditions required to char-
acterise the modal operators of agency (E) and ability (C); though the
two operators are defined by the same selection function, he treats them
as independent operators (even if C corresponds to the possibility operator
of E, they are not duals, and cannot be defined in terms of each other in
the present setting).

To characterise the other principles Elgesem imposes the following
conditions on the selection function f :

E1 f (W, w) = ∅;
E2 f (X, w) ∩ f (Y, w) ⊆ f (X ∩ Y, w);
E3 f (X, w) ⊆ X.

Condition E1 says that a goal that is realised in every world is not a state
the agent is able to bring about. As an immediate consequence of this
constraint we have the validity of (7) and (2).

Condition E2, corresponding to the agglomeration principle for E (3),
is motivated by the idea that the ability needed for the intersection of A
and B is not more general than the ability to do A and the ability to do B.

Finally E3 makes explicit the idea that in all worlds where an agent
realises his/her ability to bring about a goal the goal is indeed realised. It
is easy to see that it validates the success principle (1).

To sum up, let us recall synoptically Elgesem’s axiomatisation for the
logic of agency and ability (let us call the resulting logic L1).

A0 propositional logic,
A1 ¬C#,
A2 EA ∧ EB → E(A ∧ B),
A3 EA→ A,
A4 EA→ CA;
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plus Modus Ponens and

A ≡ B

EA ≡ EB
REE

A ≡ B

CA ≡ CB
REC(9)

As we have seen, Elgesem also considers the principle ¬E#; however
this principle is redundant since it can be easily derived from A1 and the
contrapositive of A4.

Another interesting principle, which can be derived from the success
axiom for the operator E (A3) is

¬E⊥(10)

This principle states that nobody can realise an inconsistent (impossible)
state. But, what about the corresponding principle that nobody is capable
to produce an inconsistent state?

¬C⊥(11)

This principle is valid in the proposed selection function semantics, but, as
we shall see, is not provable in L1.

Let E be an Elgesem model. For every world w in E we have

w "E ¬C⊥ ⇐⇒ w !E C⊥
⇐⇒ f (‖⊥‖E , w) = ∅.

According to condition E3

∀w ∈ W, f (X, w) ⊆ X

and, ‖⊥‖E = ∅; hence

f (‖⊥‖E , w) ⊆ (‖⊥‖E ) = ∅.

According to the intended interpretation, ¬C⊥ means that an agent is not
able to realise the impossible (here with impossible we understand an in-
consistent state of affairs). This reading seems appropriate in a physical
(practical) conception of the notion of ability. However, there are other
interpretations where such condition might be relaxed. For example Hin-
tikka [16] proposes a reading where impossible worlds are worlds where
we have a partial knowledge of the structure of the world and some contra-
dictions do not appear to be as such, unless we perform a deeper analysis
of them.

In the next section we will provide some brief philosophical comments
on whether adopting or rejecting schema (11).
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4. IMPOSSIBLE ABILITY?

The interpretation assigned by Elgesem to the “bringing about” operator
is that the agent realises a state of affair A by practically or causally con-
tributing to its occurrence [9, pp. 19ff.]. More precisely, Elgesem says that
agent’s actions be causally necessary conditions for the goal-event A to
occur. Agent’s actions are of course necessary but not sufficient because
the effective realisation of A depends also on some environmental factors,
namely, on external circumstances that allow for the exercise of agent’s
ability to achieve A. Within this specific background, and taking into ac-
count that we are dealing with successful actions, it seems obvious that
the notion of avoidability should characterise agency because it does not
make sense that an agent practically contributes to the occurrence of#, this
last being unavoidable: the occurrence of # is entirely independent of any
action of the agent. For similar – and perhaps stronger – reasons, ¬E⊥,
which is a theorem in Elgesem’s axiomatisation as is trivially derived from
EA → A, is reasonable because it is an absurdity that an agent success-
fully realises the impossible, which, by definition, cannot be practically or
causally realised.

What about the notion of practical ability? The idea of avoidability
should also be applied, as Elgesem does, to the operator C: the occurrence
of a state of affairs A cannot be caused by one agent if the goal obtains in
every state of the world. But a similar rationale should be adopted also
when the goal is ⊥ and, in fact, we will show that (11) is technically
required in Elgesem’s axiomatisation.4 But let us forget for a while that
Elgesem’s logic is incomplete without (11). Hence, the question is: In
which sense does an agent have the ability to cause the occurrence of the
impossible? Here the point may be more subtle than it appears. As we
know, in virtue of (6), agency implies ability since any action of an agent
realising A is successful and the occurrence of A depends on her action:
if I realise A this requires that I am able to do it. This is obvious and, in
fact, given E⊥ → C⊥, we cannot infer by detachment C⊥ since E⊥ is
equivalent to⊥. However, if all performed actions require a corresponding
ability, this does not require that all abilities are exercised: the domain of
abilities just includes that of actions. We may argue thus that there is a
state of affairs, say A, such that some agents are able to realise it, but that
cannot be effectively realised. What does this mean? Bear in mind that the
idea that an agent can effectively realise a state of affairs may be obtained
as the combination of ability plus opportunity: an agent having the ability
to do A may be prevented by circumstances from exercising this ability
(see also [20]). On this interpretation, the ability to do ⊥ can be viewed
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as an ability such that, for all kind of circumstances, these last prevent
any agent to exercise such an ability. Notice that, in Elgesem’s analysis,
the opportunity to do something excludes that this can be ⊥. In fact in
Elgesem’s logic [9, pp. 33 and 35] we have

¬OpportunityiEi⊥(12)

which is equivalent to

¬Opportunityi⊥(13)

In other words no agent “can effectively” do the impossible.
But the question, again, is: Does it make sense to maintain that a state of

affairs A cannot be practically realised because all possible circumstances
prevent the exercise of the ability to do A? The impression is that such an
ability is void: that all possible circumstances prevent to realise A means
that there is no circumstance that allows any agent to realise A (cf. [4,
p. 18]). Therefore, the idea of having such an ability is meaningless and so
the schema (11) is required.

In a more general perspective, we can add what Anthony Kenny [21,
p. 214] writes about the impossibility to realise #:

The President of the United States has the power to destroy Moscow, i.e., to bring it about
that Moscow is destroyed; but he does not have the power to bring it about that either
Moscow is destroyed or Moscow is not destroyed. [. . .] [T]he power to bring it about that
either p or not p is one which philosophers, with the exception of Descartes, have denied
even to God.

As we tried to argue, this impossibility can be extended also to impossible
states of affairs.

However, this is not the end of the story. Things may change when
we assign to E and C a different meaning and we go beyond the idea of
practical agency.

We may have a first exception when we deal with the idea of normative
agency. In this perspective, the role of the schema ¬C⊥ can be debated
if Elgesem’s logic of agency is combined, as done in recent works on
norm-governed agent systems, with deontic notions [5, 11, 12, 18, 19, 29].
A more extensive discussion of the interpretation of C would be to study
it with regard to normative/deontic capability. We will confine ourselves
to some short remarks. Indeed there are interpretations where ¬C⊥ is not
an appropriate axiom. In many deontic logics the schema ¬O⊥ obtains
and is meant to avoid the absurdity of norms that oblige to do some-
thing contradictory: these norms are useless since regulate something self-
contradictory and because they cannot be accomplished with. In fact, it is
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quite common in the literature to assume (implicitly or explicitly) that the
nature of norms is that they must be accomplishable [24].

In this context we may start from assuming that expressions such as
COA and EOA mean respectively that an agent can draft a norm OA,
and that the agent effectively issues OA (remember that E is a successful
operator). However, since norms are the result of the exercise of a certain
power, nothing in theory prevents a legislator to draft a norm like “it is
obligatory to smoke and not to smoke”.5 It may be argued that the absur-
dity resides here in the obligation itself and not in the fact that such an
obligation has been drafted. If this is reasonable, we may impose to have
rational norms, and a consistent normative system, without having a ratio-
nal legislator. This view makes explicit a possible way of distinguishing
practical agency from normative agency: in fact, each of us, if legislator,
can draft absurd norms whereas none of us is able to physically realise a
state of affairs such as “I smoke and I do not smoke”. If norms are required
to be consistent (axiom D: OA → PA in case of normal modal deontic
operator, or ¬O⊥), then O⊥ is equivalent to⊥ and so we have that C⊥ is
consistent; hence (11) has to be rejected as a valid principle. This is indeed
a possibility that we could admit, but, of course, we would presuppose a
different conception of agency. If we move from C to E we will notice
that EO⊥ is equivalent to ⊥. This means that an agent (legislator) has the
ability (power) to draft an inconsistent norm without making the normative
system inconsistent. On the contrary, the legislator cannot issue, namely,
make valid, an inconsistent norm without generating a contradiction within
the normative system. To sum up, rejecting ¬C⊥ and adopting ¬O⊥ per-
mits to distinguish between drafting norms and effectively issuing them
within the normative system.

Other exceptions may be put forward when we try to use the notion of
agency within more specific, and perhaps unexpected, contexts.

A somehow related interpretation arises in computer science where C,
and E can be understood, respectively, as the permission (capability) to
issue a computer instruction (let us say a syntactically correct line of code
in a program), and to execute a computer instruction. In this reading ⊥
corresponds to an illegal instruction, let us say a division by zero or an
operation where two different values are assigned, at the same time, to
one and the same memory register, which causes the system to crash, or
a condition that violates some integrity constraints. In this interpretation
C⊥ is clearly consistent since the mere fact that a potentially dangerous
instruction has been inserted in some program does not imply that the
instruction is actually executed by the interpreter or the compiler.
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Similarly, in mathematics, C can be interpreted as an act of defining a
property and E as an effective construction for the property. It is possible to
provide a definition with an empty extension (thus corresponding to⊥, but
then it is not possible to give any effective construction for such notion).
For example, given the domain of rational numbers, any two rational num-
bers such that x ,= y, we define that x divides y iff ∃z(x · z = y). Hence
C(divides(0, 1)) is consistent, since it corresponds to the definition just
given, while E(divides(0, 1)) would be true if we can provide a number z
such that 0·z = 1; according to the axioms governing multiplication in this
domain we have ∀x(0 · x = 0), from which we derive divides(0, 1) = ⊥.
From the axioms governing E we have E⊥ → ⊥, and finally ¬E⊥,
and so E(divides(0, 1)) is always false. We are aware that the parallelism
between ability and agency, on the one hand, and defining and calculating
in mathematics, on the other, may not convince the reader. In fact, such
a comparison should be tested with regard to the full axiomatisation we
could adopt in providing a precise support of this new reading of agency
and ability. We will not enter here into further details. In our view, this
last case can be roughly understood by applying the same intuition that is
behind the previous example, which concerns computer science.

5. NEIGHBOURHOOD MODELS

As we have seen in the previous section ¬C⊥ is valid, but, as we will
see, it is not provable from L1, hence L1 is incomplete wrt the intended
semantics. To show that L1 is incomplete wrt E we have to provide a
class of models such that L1 is complete for it and ¬C⊥ is false. While
it is possible to devise a class of selection function models for L1 (see
Section 6) we prefer to introduce models with a different structure. As we
shall see, the difference between the two types of semantics is just in the
intuition behind them; in fact, mathematically, they are equivalent and both
neighbourhood semantics and selection function semantics are also known
as Scott–Montague semantics (cf. [14]).

A neighbourhood model N is a structure

〈W, NC, NE, v〉
where W is a set of possible worlds, NC and NE are functions from W to
P(P(W)), and v assigns subsets of W to atomic letters.

The valuation clauses for atomic and boolean formulas are as usual
while those for modal operators are given below.

DEFINITION 2. Let w be a world in N = 〈W, NC, NE, v〉:
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N1 w "N CA iff ‖A‖N ∈ NC
w ;

N1 w "N EA iff ‖A‖N ∈ NE
w .

It is natural to add some conditions on the functions N in neighbourhood
models to validate the axioms A1–A4.

C1 W /∈ NC
w ;

C2 if X ∈ NE
w and Y ∈ NE

w then X ∩ Y ∈ NE
w ;

C3 if X ∈ NE
w then w ∈ X;

C4 NE
w ⊆ NC

w .

THEOREM 3. %L1 A iff "N A.
Proof. We provide the proof only for the correspondence between A4

and C4. For the other axioms and semantic conditions see [7, 30].
For the soundness part we have to show that axiom A4 is valid. Let us

suppose it is not. Then there is a model satisfying conditions C1–C4, and
that falsifies it; that is, there is a world w such that w ! EA → CA. This
means (1) w " EA and (2) w ! CA. From (1) we obtain ‖A‖ ∈ NE

w ,
and then, by the inclusion condition C4, ‖A‖ ∈ NC

w , but from (2) we have
‖A‖ /∈ NC

w . Hence we get a contradiction.
For the completeness part let us consider the minimal canonical neigh-

bourhood model Nmin for L1. Nmin is defined as follows:

• W is the set of all L1-maximal consistent sets,
• NE

w = {[A] : EA ∈ w},
• NC

w = {[A] : CA ∈ w},
• w " p iff p ∈ w,

where [A] = {w ∈ W : A ∈ w}, and NC and NE satisfy conditions
C1–C4.

Again we prove only the case for A4 and C4. Since the worlds in W
are L1-maximal consistent sets, for any world w we have that either (1)
EA ∈ w or (2) ¬EA ∈ w.

For (1) we have

EA ∈ w iff [A] ∈ NE
w

and, by the inclusion condition C4, [A] ∈ NC
w ; but

[A] ∈ NC
w iff CA ∈ w.

Hence, both EA and CA are in w; therefore EA→ CA ∈ w.
On the other hand if (2) is the case, we can use the tautology ¬EA →

(EA → CA) to conclude that EA → CA ∈ w.
In both cases EA → CA ∈ w, and by the properties of canonical

models we have %L1 EA→ CA. !
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It is easy to provide a neighbourhood model that falsifies ¬C⊥. Let W =
{w}, NE

w = ∅ and NC
w = {∅}. Here, ‖⊥‖ = ∅ ∈ NC

w , therefore w " C⊥
and w ! ¬C⊥. Hence we have the following result:

PROPOSITION 4. "L1 ¬C⊥.

An immediate consequence of Proposition 4 is that L1 is incomplete with
respect to the intended selection function semantics E . It is possible, how-
ever, to regain completeness by adding ¬C⊥ as axiom to L1 (let us call
the resulting logic L2).

PROPOSITION 5. Let N ′ = 〈W, NE, NC, v〉 a neighbourhood model
and E = 〈W, f, v〉 be an Elgesem model satisfying the following condi-
tions:

(1) w ∈ f (‖A‖E , w) iff ‖A‖N ′ ∈ NE
w ; and

(2) f (‖A‖E , w) ,= ∅ and ‖A‖E ,= W iff ‖A‖N ′ ∈ NC
w .6

Then

"E A iff "N ′ A.

Moreover E satisfies conditions E1, E2 and E3 iff N ′ satisfies conditions
C1–C4, and ∅ /∈ NC

w , for every w ∈ W .
Proof. Since the two models have the same worlds and the same as-

signment, clearly the two models agree on the valuation of propositional
formulas. For the modal operators E and C we have

w "E EA iff w ∈ f (‖A‖E , w)

iff ‖A‖N ′ ∈ NE
w

iff w "N ′ EA

and

w "E CA iff f (‖A‖E , w) ,= ∅ and ‖A‖E ,= W

iff ‖A‖N ′ ∈ NC
w

iff w "N ′ CA

For the other property we reason as follows: for every world w of E we
have f (‖⊥‖E , w) ⊆ ‖⊥‖E = ∅, so f (‖⊥‖E , w) = ∅, and from the rela-
tionships between the two models we obtain ∅ /∈ NC

w . The other direction
is immediate. !

The above proposition shows that any selection function models can be
transformed into equivalent neighbourhood models. However such models
must satisfy the condition
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C5 ∀w, ∅ /∈ NC
w ,

which is known to correspond to the axiom ¬C⊥. Hence we have the
following theorem.

THEOREM 6.

(1) %L2 A iff "N ′ A;
(2) %L2 A iff "E A.

The above theorem proves that E does not determine L1 but L2 (i.e.,
L1 + ¬C⊥). In the next section we will investigate whether there is a
class of selection function models that characterises L1.

6. COMPLETENESS REGAINED

In the previous section we have seen that it is possible to regain complete-
ness by using neighbourhood semantics with two neighbourhood func-
tions, one for C (NC) and one for E (NE) plus the condition that NE is
included in NC . Obviously, by the well-known equivalence between selec-
tion function semantics and neighbourhood semantics [14], we can use a
semantics with two selection functions; but what about a selection function
semantics with only a common selection function for the two operators?
The answer is positive, and in the rest of this section we show how to mod-
ify the conditions on the selection function f to recover completeness.7

All we have to do is to replace condition E3 with the following condition:

F1 If ‖A‖ ,= ∅, then, for all w, f (‖A‖, w) ⊆ ‖A‖; otherwise w /∈
f (‖A‖, w).

It is immediate to give a counter-model for ¬C⊥: Let W = {w1, w2} and
f (∅, w1) = {w2}. Since f (∅, w1) ,= ∅, and w1 /∈ f (∅, w1) we have that
w1 " C⊥.

As a first result for this semantics we show that axioms are valid in it
and the inference rules preserve validity.

We use S to denote an Elgesem model that satisfies condition F1.

THEOREM 7. If %L1 then "S A.
Proof. Clearly all propositional tautologies are valid and Modus Ponens

preserves validity.
Axiom EA → A. Let w be world in W . If ‖A‖ ,= ∅ then f (‖A‖, w) ⊆

A, and this is the well-known condition for this axiom to be valid, and thus
true at w.
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If ‖A‖ =∅ , then w /∈ f (‖A‖, w). But in this case w ! EA, and then
w " EA→ A.

Axiom EA → CA. Let w be world in W . If ‖A‖ ,= ∅ then f (‖A‖, w)
⊆ A. If " EA, then w ∈ f (‖A‖, w); hence f (‖A‖, w) ,= ∅, w " CA.
Therefore w " EA → CA.

If ‖A‖ =∅ , then w /∈ f (‖A‖, w). But in this case w ! EA, and then
w " EA→ CA.

Axiom ¬C#. This axiom is independent from the new condition.
Axiom EA∧EB → E(A∧B). Condition E2 takes care of the majority

of cases, but we have to be careful since it is possible that the conjunction
of A and B is inconsistent.

If w " EA ∧ EB, then w ∈ ‖EA ∧ EB‖; thus w ∈ ‖EA‖ ∩ ‖EB‖,
which means that w ∈ f (‖A‖, w) and w ∈ f (‖B‖, w). According to
condition F1 we have

‖A‖ ,= ∅ and ‖B‖ ,= ∅,(14)

which implies that f (‖A‖, w) ⊆ ‖A‖ and f (‖B‖, w) ⊆ ‖B‖. On the
other hand, it is possible that ‖A∧B‖ =∅ , which means that w /∈ f (‖A∧
B‖, w). If this is the case then ‖A‖∩‖B‖ =∅ ; Consequently f (‖A‖, w)∩
f (‖B‖, w) = ∅.

On the other hand, if ‖A‖ =∅ (or ‖B‖ =∅ ) then ‖A∧ B‖ =∅ and so
f (‖A‖, w) = f (‖A ∧ B‖, w).

A ≡ B iff ‖A‖ =‖ B‖. In particular, if ‖A‖ =‖ B‖ =∅ , then
f (‖A‖, w) = f (‖B‖, w). !

The proof for the completeness is based on canonical models.

DEFINITION 8. A selection function canonical model is a structure Sc =
〈W, f, v〉 such that:

• W is the set of all L1-maximal consistent sets;
• v is an Elgesem valuation function such that, for all atomic proposition

p, w " p iff p ∈ w;
• f : P(W)×W )→P(W) is thus defined:

– if CA /∈ w, then f ([A]Sc , w) = ∅; otherwise,
– if [A]Sc = ∅, then f ([A]Sc , w) = W − {w},
– if [A]Sc ,= ∅, then f ([A]Sc , w) = [EA]Sc

where [A]Sc , the membership set of a formula A, is defined as follows:
[A]Sc = {w ∈ W : A ∈ w}.

An immediate consequence of the above construction and Lindenbaum’s
Lemma is the following proposition.
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PROPOSITION 9. Let Sc be a canonical selection function model
〈W, f, v〉, then:

• [A]Sc = ∅ iff A ≡ ⊥;
• |W | > 1;
• If A ≡/ # and A ≡/ ⊥, then [EA]Sc ,= ∅.

LEMMA 10. For every world w ∈ W in Sc, and every formula A, w "Sc

A iff A ∈ w (or equivalently ‖A‖Sc = [A]Sc ).
Proof. We prove the lemma by induction on the complexity of the for-

mula. The inductive base is given by the basic condition on the valuation
function for canonical models. Furthermore we consider only the case of
modal operators.

If w " EA, then by the evaluation function we have w ∈ f (‖A‖, w);
by the inductive hypothesis w ∈ f ([A], w), thus w ∈ [EA], therefore
EA ∈ w.

If EA ∈ w, then this implies that CA ∈ w and A ∈ w. Since w is
consistent A ≡/ ⊥ and [A] ,= ∅; thus f ([A], w) = [EA] and consequently
w ∈ f ([A], w). By the inductive hypothesis w ∈ f (‖A‖, w), which
implies w " EA.

If w " CA then f (‖A‖, w) ,= ∅, and by the inductive hypothesis
f ([A], w) ,= ∅; by construction this implies that CA ∈ w.

If CA ∈ w, then either f ([A], w) = [EA] or f ([A], w) = W − {w}.
Clearly A cannot be #, thus, according to Proposition 9, f ([A], w) ,= ∅,
and by the inductive hypothesis so is f (‖A‖, w); therefore w " CA. !

LEMMA 11. Sc satisfies conditions E1, E2, and F1.
Proof. ¬C# is an axiom, so ¬C# ∈ w, for every world w; hence C# /∈

w. By the construction of canonical models we have f ([#], w) = ∅. Since
[#] = W , we have f (W, w) = ∅.

If w ∈ f ([A], w)∩f ([B], w), then w ∈ f ([A], w) and w ∈ f ([B], w).
This means that [A] ,= ∅ and [B] ,= ∅. From this we obtain that EA ∈ w
and EB ∈ w. Consequently EA∧EB ∈ w and by the property of maximal
consistent sets E(A∧B) ∈ w. All we have to prove now is that [A∧B] ,=
∅. To prove it we can use the same argument we have developed in the
proof of Theorem 7 when we have shown that EA ∧ EB → E(A ∧ B) is
valid.

If A ≡ ⊥ then either f ([A], w) = W − {w} or f ([A], w) = ∅. In both
cases w /∈ f ([A], w). If A ≡ ⊥, then, if CA ∈ w, f ([A], w) = [EA].
But for every world x if EA ∈ x then A ∈ x; therefore f ([A], w) ⊆
[A]. On the other hand, if CA ,= w, then f ([A], w) = ∅, thus, trivially
f ([A], w) ⊆ [A]. !
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From the two lemmata above we obtain that L1 is complete with respect
to S .

THEOREM 12. %L1 A iff "S A.

7. NON-NORMAL WORLDS AND RELATIONAL MODELS

In the previous sections we examined Elgesem’s modal logic of agency
and ability using semantics with different flavours. In general the selection
function semantics and neighbourhood semantics give rise to the same
structure: the selection function semantics focuses on the worlds where
some actions can be realised in relation to a given world, while the neigh-
bourhood semantics identifies the actions (formulas) that can be completed
successfully in a given world.

In Section 6 we proposed a characterisation of L1 based on models
satisfying condition F1. According to the intended reading f (∅, w) is the
set of worlds where the agent realises her ability to bring about an impos-
sible goal (whatever an impossible goal is). So in some senses, f (∅, w)
corresponds to a set of impossible or imaginary worlds.8 At any rate, the
technical machinery of impossible (non-normal, queer) worlds9 offers us
the opportunity to present an alternative class of Elgesem’s models for L1.
All we have to do is to supplement the set W of possible worlds with the
impossible world w⊥, to establish that for every formula A, w⊥ # A, and
to define validity as validity at the normal worlds. The revised semantics
makes explicit the need for impossible worlds – after all, if we assume that
agents might have the ability to realise the impossible, it seems plausible to
have a semantic counterpart for this notion. Hansson and Gärdenfors [14]
point out that it is possible to destroy the general dependency of modal
operators on the underlying semantic structure (in the case at hand the
selection function f , and the accessibility relation R in relational models)
by using non-normal/impossible worlds obeying different logical rules.

Technically non-normal worlds deny the general idea behind inten-
sional semantics that the value of modal formulas at a world w depends
on the values of other formulas in other worlds, and validity is defined as
validity at the normal worlds. Although the philosophical intuition behind
non-normal worlds is sound, it commits us to postulate their existence;
what is more is that its treatment is rather unsatisfactory: they are taken
as black-boxes without any further analysis of their (internal) structure. In
this way, we fail to recognise the potential multiplicity of types of non-
normal worlds. A more appropriate solution is to recast the semantics with
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some more general type of dependence relation between truth of modal
formulas and truth in other worlds [14].

Scott–Montague models were devised, originally, to overcome the draw-
back of non-normal worlds we just have alluded to; but, for Elgesem’s
models, we have to reintroduce them, either implicitly or explicitly. If
we have to reinstate non-normal/impossible worlds in order to prevent
¬C⊥ to be valid in Elgesem’s models, then we overstep the very own
idea motivating this type of semantics.

Since non-normal worlds are required, either implicitly – when con-
dition F1, which does not rule out the presence of impossible worlds in
a model, is assumed – or explicitly – when the impossible world w⊥ is
introduced –, in Elgesem’s models the advantages of using a selection
function semantics instead of relational models with non-normal worlds
is lost. One could then ask if it is possible to devise a relational model for
L1 (and L2). In the rest of this section we will investigate this issue.

Classical modal logics are characterised by models with the following
structure [10]:

〈W, N, R∗, v〉(15)

where W , v are as before, N ⊆ W is the set of normal worlds, and R∗ is a
set of binary relations over N ×W . The valuation clause for ! is

w " !A iff w ∈ N and(16)
∃R ∈ R∗ such that ∀x(wRx iff x " A)

The set of non-normal worlds is denoted by Q (where Q = W − N ).
Alternatively we could define a model as 〈W, Q, R∗, v〉. Clearly if w ∈
Q, for any formula A, w ! !A. Worlds in Q correspond to worlds in a
neighbourhood model with empty neighbourhoods.

Now to accommodate C and E we have to combine one model for the
E component and one model for the C component. Fortunately the two
operators are related by axiom A4, thus we can adopt the structure (from
now on we will use X as a variable ranging over C, E)

〈W, QE, QC, RE, RC, v〉(17)

where W is a set of possible worlds, QE and QC are sets of non-normal
worlds such that QC ⊆ QE , RE and RC are sets of binary relations with
signature W −QX ×W , and v is an assignment. Moreover

R1 ∀R ∈ RC∀w∃x¬(wRx) (all relations in RC are point-wise non-
universal);

R2 ∀w /∈ QE∀R, S ∈ RE∃T ∈ RE such that Rw ∩ Sw = Tw (RE is
point-wise closed under intersection);
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R3 ∀R ∈ RE∀w(wRw) (all relations in RE are reflexive);
R4 ∀w /∈ QE∀R ∈ RE∃R′ ∈ RC such that Rw = R′w (the relations in RE

are sub-relations of relations in RC);
R5 ∀R ∈ RC∀w∃x(wRx) (all relations in RC are serial).

As we shall see, L1 is determined by the class of relational models satis-
fying R1–R4, and L2 by R1–R5. To prove these results we are going to
show that for each relational model there is an equivalent neighbourhood
model, and for every (finite) neighbourhood model there is an equivalent
relational model.

Before proving this result we give an auxiliary lemma about sufficient
conditions to ensure the equivalence of relational and neighbourhood mod-
els. In what follows we will use Rw, for R ∈ RX to denote the set of
worlds accessible from w using the relation R, formally: if R ∈ RX, then
Rw = {w′ ∈ W : wRw′}.

LEMMA 13. Let N = 〈W, NE, NC, v〉 be a neighbourhood model and
R = 〈W, QE, QC, RE, RC, v〉 be a relational model such that

(1) ∀w ∈ W if NX
w , then ∀x ∈ NX

w ∃R ∈ RX such that x = Rw, and
(2) ∀w ∈ W if w /∈ Q, then ∀R ∈ RX∃x ∈ NX

w such that x = Rw.

Then for all formulas A: "N A iff "R A.
Proof. The proof is by induction on the complexity of A. The two

models have the same set of possible worlds and the same assignment,
thus they agree on every propositional variable. For the inductive step we
consider only the cases of the modal operators.

w "N XA⇒ ‖A‖N ∈ NX
w

⇒ Nx
w ,= ∅

⇒ w /∈ QX

⇒ ∃R ∈ RX : Rw = ‖A‖N = ‖A‖R

⇒ ∃R ∈ RX∀x(wRx iff x "R A)

⇒ w "R XA.

For the other direction we have

w "R A⇒ w /∈ Q and ∃R ∈ RX∀x(wRx iff x "R A)

⇒ Rw = ‖A‖R = ‖A‖N

⇒ Rw ∈ NX
w

⇒ ‖A‖N ∈ NX
w

⇒ w "N XA. !
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For every relational model we can generate an equivalent neighbourhood
model where NX

w = {Rw : R ∈ RX}. For the other direction, on the other
hand, we have to be careful. Besides the constraints dictated by the internal
structure of the model we have to ensure that the set of relations generated
from NE

w is closed under intersection and the relations are serial if we want
to satisfy R5. The idea is the same as in the other direction: we use the sets
in NX

w to create instances of relations in RX. Here the problem is that given
two worlds w and w′ it is very likely that |NE

w | ,= |NE
w′ |; hence w generates

|NE
w | sub-relations and w′ generates |NE

w′ | sub-relations, thus there are sub-
relations without elements in relation with w. A simple solution to obviate
this problem is to pick a fixed but arbitrary x ∈ NE

w for all the additional
relations.

THEOREM 14. (1) For every (finite) relational model M there is an
equivalent (finite) neighbourhood model N such that if R satisfies Rn
then N satisfies Cn (for 1 ≤ n ≤ 5).

(2) For every finite neighbourhood model N there is an equivalent
finite relational model R such that if N satisfies Cn then R satisfies Rn
(for 1 ≤ n ≤ 5).

Proof. First of all the models will have the same set of worlds and the
same assignment, thus all we have to show is that it is possible to generate
appropriate sets of relations from the given neighbourhood functions and
appropriate neighbourhood functions from the given sets of relations.

Part 1. Given a (finite) relational model R we can generate an equiva-
lent (finite) neighbourhood model as follows:

• If w ∈ QX then NX
w = ∅; otherwise

• NX
w = {Rw : R ∈ RX}.

It is immediate to verify that the conditions of Lemma 13 are satisfied by
the models obtained from the above construction; therefore the generated
models are equivalent to the generating models.

Case R1 ⇒ C1. According to the construction we have that NC
w =

{Rw : R ∈ RC}, but given R1 for every w and every R, Rw ,= W , thus
W /∈ NC

w .
Case R2 ⇒ C2. Condition R2 states that for each world w, the set of

the projections of the relations over w is closed under intersection. NE
w is

the set of all projections of the relations in RE over w, thus NE
w is closed

under intersection.
Case R3 ⇒ C3. Each R ∈ RE is reflexive, then for every normal

world w, w ∈ Rw; by construction NE
w is the set of all Rw. Therefore for

every X ∈ NE
w , w ∈ X. If w is a non-normal world then NE

w = ∅ and C3
is vacuously satisfied.
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Case R4 ⇒ C4. If w ∈ QE then, by construction, NE
w = ∅, and for

every set NC
w , NE

w ⊆ NC
w . In case w ∈ QC , then also w ∈ QE , and we can

repeat the previous argument. If w /∈ QE we have that NC
w = {Rw : R ∈

RE}, but, by condition 4 there is a relation R′ ∈ RC such that Rw = R′w.
This implies that w /∈ QC , and so NE

w ⊆ NC
w .

Case R5 ⇒ C5. According to the construction we have that NC
w =

{Rw : R ∈ RC}, but given R5 for every w /∈ QC and every R, Rw ,= ∅,
thus ∅ /∈ NC

w .
Part 2. To build a finite relation model from a finite neighbourhood

model we use the following construction.
For each NE

w and NC
w let !E

w and !C
w be sequences of all the elements

in NE
w and NC

w such that if i ≤ |NE
w |, then !E

w,i = !C
w,i (we use !X

w,i to
indicate the i-th element of !X

w ). Moreover

e = max{|NE
w | : w ∈ W }, c = max{|NC

w | : w ∈ W }.

Then

RE =
⋃

1≤i≤e

RE
i , RC =

⋃

1≤i≤c

RC
i

where

RE
i = {(w, w′) : w /∈ QE and w′ ∈ α(w, i)},

RC
i = {(w, w′) : w /∈ QC and w′ ∈ γ (w, i)}

where α and γ are partial functions with signature α : W × N )→ NE and
γ : W × N )→ NC such that:

α(w, i) =






undefined if i > e or NE
w = ∅,

!E
w,i if i ≤ |NE

w |,
!E

w,1 otherwise

and

γ (w, i) =






undefined if i > e + c or NC
w = ∅,

!C
w,i if i ≤ |NE

w |,
!C

w,i−e+|NC
w | if e < i ≤ e + |NC

w | + |NE
w |,

!C
w,1 otherwise.

It is easy to verify that the models obtained from the above construc-
tion obey to the conditions of Lemma 16; consequently this construction
produces equivalent models.
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Case C1 ⇒ R1. Let us suppose it does not hold. This means there is
a relation S ∈ RC such that there is a world w that is in relation with all
the worlds, i.e., Sw = W . Since S ∈ RC and Sw ,= ∅, then w /∈ QC , and
for some i, Sw = β(w, i) = !C

w,i , but this implies that Sw ∈ NC
w , and thus

W ∈ NC
w when we obtain a contradiction.

Case C2 ⇒ R2. By construction, for any w /∈ QX and R ∈ RX,
Rw corresponds to some set R ∈ NX

w , and for every set S ∈ NX
w there is a

relation S ∈ RX such that Sw = S. Thus for any two relations R, S ∈ RE ,
Rw, Sw ∈ NE

w . Since NE
w is closed under intersection Rw ∩ Sw ∈ NE

w ;
again, by construction, there is a relation T such that Tw = Rw ∩ Sw.

Case C3 ⇒ R3. If NE
w = ∅ then w ∈ QE and the condition does

not apply to it. Otherwise we have that each relation RE
i is based on !E

w,i

if i ≤ |NE
w | or !E

w,1 otherwise. In both cases condition !E
w,x ∈ NE

w and
condition C3 guarantee that w ∈ !E

w,x . Thus (w, w) ∈ RE
i , which implies

that every relation R ∈ RE is reflexive.
Case C4 ⇒ R4. Since NE

w ⊆ NC
w and, by hypothesis, W is finite,

|NE
w | ≤| NC

w |. By construction there are e relations RE and c relations
RC (with e ≤ c). By construction, for i ≤ |NE

w |, α(w, i) = γ (w, i), i.e.,
!E

w,i = !C
w,i . Notice that for each relation Rw = !X

w,i for some i ∈ N.
Hence we can conclude that for every relation R ∈ RE there is a relation
R′ ∈ RC such that Rw = R′w.

Case C5 ⇒ R5. Let us suppose it does not hold. This means there
is a relation S ∈ RC such that there is a world that is in relation with
no worlds, i.e., Sw = ∅. Since S ∈ RC , then w /∈ QC , and for some i,
Sw = β(w, i) = !C

w,i , but this implies that Sw ∈ NC
w , and thus ∅ ∈ NC

w

when we obtain a contradiction. !

Due to the above procedure to generate such relational models, in the case
of infinite N or N ′ models we would get non-enumerable infinitary re-
lational structures. To avoid these complexities, it is sufficient to consider
N and N ′ when they are finite. This is possible by preliminarily showing
that L1 and L2 have the finite model property wrt the neighbourhood
models previously defined. The fmp follows immediately from the results
of Lewis [23] and [34] that every classical non-iterative modal logic has
the finite model property.10

Clearly L1 and L2 are non-iterative thus we have the following theo-
rem.

THEOREM 15. L1 and L2 have the fmp.

We can now prove the completeness of the L1 and L2 with respect to the
relational models developed in this section.
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THEOREM 16. Let R1 be a relational model satisfying R1–R4, and R2

be a relational model satisfying R1–R5; then

(1) %L1 A iff "R1 A;
(2) %L2 A iff "R2 A.

Proof. Let us consider only L1. From Theorem 3 we know that

"N A→ %L1 A,

which is equivalent to saying that

"L1 A→ !N A.

Since L1 has the finite model property, there is a finite model NFIN and a
world w in it such that

w "NFIN ¬A

According to Proposition 14 and the generation of the corresponding rela-
tional model

w "R1 A

which implies

!R1 A

Then,

"L1 A→ !R1 A

and so

"R1 A⇐⇒ %L1 A

The proof for L2 and R2 is analogous. !

Here we want to propose a simple interpretation of relational models: the
capability of an agent to realise a particular state A depends on her ability
to perform some actions in the situation described by the then actual world.
Accordingly each accessibility relation corresponds to a concrete action. In
this perspective non-normal worlds are just situations where an agent has
no possibility to perform any action.
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8. DISCUSSION

When we consider the semantics developed by Elgesem we have to notice
that he uses only one selection function to represent the two modal opera-
tors instead of the two neighbourhood functions of Section 5. This amounts
to saying that Elgesem considers agency and ability as two facets of the
same phenomenon – the phenomenon described by the selection function.
Thus to discern the two concepts he has to adopt two different valuation
clauses. In particular the condition for E is the condition for a ! operator,
while that for C is the condition used for a ♦ operator. However these
conditions, in the context of non-normal modal logic, do not imply that ♦
is the dual of !. On the contrary the neighbourhood semantics assumes
two separate but related modal operators.

It is true that selection function models are widely used in conditional
logics and with different evaluation clauses for modal operators they are
just a “notational” variant of neighbourhood models (indeed they are both
classified as Scott–Montague semantics). However Elgesem models are
not standard in modal logic; the particular evaluation clauses for modal
operators make Elgesem semantics different from standard selection func-
tion semantics for modal logic. Accordingly the construction of canonical
models requires some ingenuity, and it is not a straightforward extension of
standard construction of canonical models – in particular when the condi-
tion F1 is involved. As we have seen this condition is used to discriminate
Elgesem models rejecting ¬C⊥ from models validating it. But this con-
dition is relevant not only for this axiom but it is entangled with some
other conditions. The proofs of soundness and completeness (Theorems 7
and 10) make essential use of this condition in the case of agglomeration
for E. The axioms are clearly independent, but the semantic conditions
are, in a certain sense, entangled together by the use of the same selec-
tion function to characterise two independent but related modal operators.
Interestingly the connection is broken when we explicitly introduce non-
normal worlds in Elgesem model to characterise L2 (see the introduction
to Section 7). Moreover condition F1 makes clear the implicit need of
non-normal worlds.

[25], among others, argues that an agent can carry out an action success-
fully if she has the ability as well as the opportunity do to it. Indeed Elge-
sem studies the relationships between ability and agency, and he correctly
realises that agency implies opportunity, i.e., EA → Opportunity EA. But
the notion of opportunity is given in terms of agency, i.e., Opportunity A ≡
(E¬A ∨ A). Therefore we believe that the semantics proposed by Elge-
sem does not fully capture the idea that agency consists of ability plus



ON THE AXIOMATISATION OF ELGESEM’S LOGIC 427

opportunity since those three notions are represented by the same selec-
tion function. On the contrary the other semantics do recognise that ability
alone is not enough to represent agency and that it has to be supplemented
by something else.

Finally, as we said, Elgesem’s semantics leads to the introduction (ei-
ther implicitly or explicitly) of non-normal worlds. This can be shown
if we compare the reasons why the schema ¬C⊥ is valid in Elgesem’s
logic to the conditions we have to impose to regain completeness, in this
semantics, and not to adopt such as schema. As we have seen, this last is
valid in Elgesem’s original semantics simply because from f (X, w) ⊆ X
and ‖⊥‖E = ∅, we get f (‖⊥‖E , w) = ∅. Recall that, intuitively, f (X, w)
is interpreted as the set of worlds where the agent realises the ability she
has in w to bring about X. Thus agency and ability refer to the same set of
worlds selected by f : if it is impossible to have the ability to achieve⊥ so it
is similarly impossible to achieve it. If we look at the conditions that allow
us to regain completeness without accepting (7) we realise that condition
F1 confines the inclusion f (X, w) ⊆ X only to the cases where X ,= ∅;
otherwise, w /∈ f (X, w). Notice that, strictly speaking, this condition does
not exclude that there is one world w where ⊥ holds, but simply that, if
such a world exists, it is not picked out by f (X, w). This w, if it exists,
is nothing but an impossible world; therefore if there is a second world x
such that w ∈ f (∅, x), then x is a non-normal world. This idea seems to
be confirmed by focusing on another alternative. In fact, the validity of (7)
in Elgesem’s original semantics results from the condition f (X, w) ⊆ X,
applied to any X, and from using a single selection function for both C and
E. Thus, let us suppose to define two different functions fE and fC as in
standard Scott–Montague selection function models. Following Elgesem,
we will simply state that fE(X, w) ⊆ X for any X, and, in virtue of (6),
that fE(X, w) ⊆ fC(X, w). As in Elgesem’s approach, we will obtain
fE(‖⊥‖E , w) = ∅, but this will not imply that the same holds for fC . This
means that schema (7) is not required and that the set of worlds picked
out by fC for a world w may include a world x where an agent is able
to do ⊥; hence w is a non-normal world, as we argued. To sum up, the
semantical implication we have to accept if we want to adopt Elgesem’s
strategy – using one selection function to represent E and C and having
full reflexivity for E – is that of excluding non-normal worlds: we have
necessarily to adopt (7). Otherwise, we may change strategy but this re-
quires (either implicitly or explicitly) the existence of non-normal worlds.
The first option is of course sound, as we argumented in Section 4 with
regard to the idea of practical agency. However, it is not the only available
because different interpretations may be assigned to the idea of agency.
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On the other hand, as we argued, the introduction of non-normal worlds
within Elgesem’s semantics is not the best choice as their interpretation is
not fully satisfactory; on the contrary, the interpretation we have proposed
for non-normal worlds seems to fit nicely with the intended reading of the
accessibility relations for this type of logics. This is the advantage of multi-
relational semantics, which allows to avoid that non-normal worlds are
like black-boxes, as we said, namely entities without any further analysis
of their (internal) structure. This semantics, on the other hand, does not
lend itself to easy manipulation and calculation. Neighbourhood models
are quite the opposite: they are easier to manipulate and work with for
non-iterative logic, even though they are not particularly intuitive. Both
aspects are mainly due to their close relationships with algebraic semantics
for modal logic. Elgesem’s semantics, at the end, is simple and provides
an intuitive interpretation, but it is not transparent to extensions. Hidden
semantic relationships can appear when such a semantics is extended: two
examples we have seen here are the role played by reflexivity in making
L1 incomplete, and the relationships between ¬C⊥ and agglomeration
for E.

ACKNOWLEDGEMENTS

Preliminary versions of this paper were presented at the Annual Meeting
of the Australasian Association for Logic (Dunedin, New Zealand, 17–18
January 2004) and at Advances in Modal Logic 2004 (Manchester, UK,
9–11 September 2004). We would like to thank all anonymous referees for
their valuable comments and suggestions that improved the presentation of
this paper.

The first author was supported by Australia Research Council under
Discovery Project No. DP0452628 on “Combining modal logic for dy-
namic and multi-agents systems”.

NOTES

1 As we will see in a few moments, the two concepts are those of “bring about” and
“practical ability”. Elgesem formalises them as Does and Ability respectively, such that
both operators are, as expected, indexed by agents. For the sake of simplicity, we will adopt
a different notation, which is quite common in the literature (see, e.g., [19]). Thus the first
is represented by the operator E, while the second by C. Of course, both are labelled by
agents as well.
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2 According to Elgesem, the full idea of avoidability requires to focus on two different,
but interconnected, aspects. The first corresponds to the negative conditions stated by (2)
and (7). Both schemas are aimed to state that no agent brings about logical truths. The
second claim is that “an agent’s behaviour, when he brings about something, is instrumental
in the production of that which he brings about”. This general idea corresponds to saying,
positively and with respect to any state of affairs A, that “if the agent had not behaved
in the way he did when he brought it about that A, then he might not have brought it
about that A”. The last requirement is rendered by defining suitable dyadic operators and
principles which reflect Elgesem’s own philosophical interpretation of agency [9]. This
second aspect will not be considered here, since it does not seem relevant with regard to
the aims of this paper.

3 Elgesem’s semantics for the modal logic of agency and ability is a structure
〈W, f1, . . . , fn, V 〉 (cf. [9, p. 20] and [8, p. 54]), where each fi , 1 ≤ i ≤ n, is a function as
in (8) and i is an agent. Since there are no interactions among the agents and all functions fi

are independent from each other and obey the same conditions, we can restrict ourselves
to the case of a single agent. Elgesem also considers some foundational aspects of the
notions he deals with and introduces some additional functions in order to capture the
idea of avoidability and accidence. However those functions do not play any relevant role
in the characterisation of the modal operators E and C. The valuation function and the
constraints on the model are given in terms of properties of f . The other functions are used
to specify constraints on concrete instances of f . Finally V is a valuation function while v

is an assignment.
4 In fact, the general idea of avoidability is often linked with rejecting the ability to

realize the impossible. This view is maintained, in a way, by Mark Brown in [4, p. 18],
where the author argues that the ability to realise ⊥ makes sense only in bizarre-sounding
examples in which, for any goal A, the agent, though able to do A, is prevented to realise
it for all possible situations.

5 The notions at hand in this interpretation are closely related to the long-standing prob-
lem of the validity of norms in a normative system; for a logical account, see, among others,
the seminal work by Alchourrón and Bulygin [1].

6 The condition that ‖A‖E ,= W is due to the axiom A1, which requires it.
7 Elgesem [8] claims that his logic is complete. However the proof is only sketched. To

the best of our knowledge this paper provides the first full proof of completeness for L1
and L2 with respect to Elgesem models.

8 It is beyond the scope of the paper to give a characterisation of impossible worlds.
All we ask for is that non-normal/impossible worlds are worlds whose rules and laws
are different from the rules and laws of the normal worlds. In particular we assume that
impossible worlds are worlds where ⊥ is true, however they are impossible according to a
classical reading: thus, if ⊥ is true everything else is true, and a fortiori # is true. Thus it
is not possible to use # to discern possible worlds from impossible ones.

9 Non-normal (or queer) worlds were introduced by Kripke in [22] to give a possible
world semantics to Lewis’ systems S2 and S3. Since then they have been used to provide
models for several non-normal and intensional logics.

10 A modal logic is non-iterative iff it can be axiomatised by using only non-iterative
axioms. A formula (axiom) A is non-iterative iff for every subformula !iB/♦iB of A, B

does not contain a modal operator.
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