Problems 1 & 2

These two problems are the same as those in the last year's ssignment 3. Please refer to the supplement handout www.stanford.edu/class/cs206/hw5-sol2.pdf.

Problem 3

In general, computing the outcome of an auction requires exponential time. In this problem, we make use of the fact that only a bid of consecutive months is accepted. The following is the simulation of the operation of the $O(n^2)$ algorithm mentioned in the class:

Step 1: Bids for (Jan)	
Bid 1: (Jan, \$50) =	\$50
Max(Jan) =	\$50
Step 2: Bids for [Jan – Feb]	
Max(Jan) + Bid 4: (Feb, \$40) =	\$90
Bid 2: $(Jan - Feb, \$80) =$	\$80
Max(Jan - Feb) =	\$90
Step 3: Bids for (Jan – Mar)	
Max(Jan) + Bid 5: (Feb - Mar, \$110) =	\$160
Max(Jan - Feb) + Bid 6: (Mar, \$20) =	\$110
Bid 3: $(Jan - Mar, $150) =$	\$150
Max(Jan - Mar) =	\$160

Hence, the winning bids are Bid 1: (Jan, \$50) and Bid 5: (Feb – Mar, \$110).

Problem 4

a. The LP constraint for this problem in matrix form is as follows:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} a \\ b \end{bmatrix} \le \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

where a and b (binary: 1 = yes, 0 = no) determine whether Alice or Bob (or both) gets their bids respectively. Notice that the order of the rows of the bid matrix does not matter in this case.

- b. A matrix is TU if and only if the determinants of all the square sub-matrices are -1, 0, or 1. The bid matrix in the problem is TU because:
 - 1. the determinants of all the 1 x 1 sub-matrices are either 1 or 0.
 - 2. the determinant of the upper 2 x 2 sub-matrix is 1 while that of the lower 2 x 2 sub-matrix is –.