
Stanford CS193p
Fall 2011

Stanford CS193p
Developing Applications for iOS

Fall 2011

Stanford CS193p
Fall 2011

Views
A view (i.e. UIView subclass) represents a rectangular area
Defines a coordinate space

Draws and handles events in that rectangle
Hierarchical
A view has only one superview - (UIView *)superview
But can have many (or zero) subviews - (NSArray *)subviews
Subview order (in subviews array) matters: those later in the array are on top of those earlier

UIWindow
The UIView at the top of the view hierarchy
Only have one UIWindow (generally) in an iOS application
It’s all about views, not windows

Stanford CS193p
Fall 2011

Views
The hierarchy is most often constructed in Xcode graphically
Even custom views are added to the view hierarchy using Xcode (more on this later).

But it can be done in code as well
- (void)addSubview:(UIView *)aView;
- (void)removeFromSuperview;

Stanford CS193p
Fall 2011

View Coordinates
CGFloat
Just a floating point number, but we always use it for graphics.

CGPoint
C struct with two CGFloats in it: x and y.
CGPoint p = CGPointMake(34.5, 22.0);
p.x += 20; // move right by 20 points

CGSize
C struct with two CGFloats in it: width and height.
CGSize s = CGSizeMake(100.0, 200.0);
s.height += 50; // make the size 50 points taller

CGRect
C struct with a CGPoint origin and a CGSize size.
CGRect aRect = CGRectMake(45.0, 75.5, 300, 500);
aRect.size.height += 45; // make the rectangle 45 points taller
aRect.origin.x += 30; // move the rectangle to the right 30 points

Stanford CS193p
Fall 2011

(0,0) increasing x

increasing y

Coordinates
Origin of a view’s coordinate system is upper left
Units are “points” (not pixels)
Usually you don’t care about how many pixels per point are on the screen you’re drawing on.
Fonts and arcs and such automatically adjust to use higher resolution.
However, if you are drawing something detailed (like a graph, hint, hint), you might want to know.
There is a UIView property which will tell you:
@property CGFloat contentScaleFactor; // returns pixels per point on the screen this view is on
This property is not (readonly), but you should basically pretend that it is for this course.

Views have 3 properties related to their location and size
@property CGRect bounds; // your view’s internal drawing space’s origin and size
The bounds property is what you use inside your view’s own implementation.
It is up to your implementation as to how to interpret the meaning of bounds.origin.
@property CGPoint center; // the center of your view in your superview’s coordinate space
@property CGRect frame; // a rectangle in your superview’s coordinate space which entirely
 // contains your view’s bounds.size

(400, 35)

Stanford CS193p
Fall 2011

Coordinates
Use frame and center to position the view in the hierarchy
These are used by superviews, never inside your UIView subclass’s implementation.
You might think frame.size is always equal to bounds.size, but you’d be wrong ...

View A

View B

300, 225 20025
0 0, 0

320

320

140, 65

View B’s bounds = ((0,0),(200,250))
View B’s frame = ((140,65),(320,320))
View B’s center = (300,225)

View B’s middle in its own coordinate space is
(bound.size.width/2+bounds.origin.x,
 bounds.size.height/2+bounds.origin.y)
which is (100,125) in this case.

Because views can be rotated
(and scaled and translated too).

Views are rarely rotated, but don’t
misuse frame or center by assuming that.

Stanford CS193p
Fall 2011

Creating Views
Most often you create views in Xcode
Of course, Xcode’s palette knows nothing about a custom view class you might create.
In that case, you drag out a generic UIView from the palette and use the Inspector
 to change the class of the UIView to your custom class (demo of this later).

How do you create a UIView in code (i.e. not in Xcode)?
Just use alloc and initWithFrame: (UIView’s designated initializer).

Example
CGRect labelRect = CGRectMake(20, 20, 50, 30);
UILabel *label = [[UILabel alloc] initWithFrame:labelRect];
label.text = @”Hello!”;
[self.view addSubview:label]; // we’ll talk about self.view later
 // (it is a Controller’s top-level view)

Stanford CS193p
Fall 2011

Custom Views
When would I want to create my own UIView subclass?
I want to do some custom drawing on screen.
I need to handle touch events in a special way (i.e. different than a button or slider does)
We’ll talk about handling touch events later. For now we’re focussing on drawing.

Drawing is easy ... create a UIView subclass & override 1 method
- (void)drawRect:(CGRect)aRect;
You can optimize by not drawing outside of aRect if you want (but not required).

NEVER call drawRect:!! EVER! Or else!
Instead, let iOS know that your view’s visual is out of date with one of these UIView methods:
- (void)setNeedsDisplay;
- (void)setNeedsDisplayInRect:(CGRect)aRect;
It will then set everything up and call drawRect: for you at an appropriate time
Obviously, the second version will call your drawRect: with only rectangles that need updates

Stanford CS193p
Fall 2011

Custom Views
So how do I implement my drawRect:?
Use the Core Graphics framework

The API is C (not object-oriented)
Concepts
Get a context to draw into (iOS will prepare one each time your drawRect: is called)
Create paths (out of lines, arcs, etc.)
Set colors, fonts, textures, linewidths, linecaps, etc.
Stroke or fill the above-created paths

Stanford CS193p
Fall 2011

Context
The context determines where your drawing goes
Screen (the only one we’re going to talk about today)
Offscreen Bitmap
PDF
Printer

For normal drawing, UIKit sets up the current context for you
But it is only valid during that particular call to drawRect:
A new one is set up for you each time drawRect: is called
So never cache the current graphics context in drawRect: to use later!

How to get this magic context?
Call the following C function inside your drawRect: method to get the current graphics context ...
CGContextRef context = UIGraphicsGetCurrentContext();

Stanford CS193p
Fall 2011

Define a Path
Begin the path
CGContextBeginPath(context);

Move around, add lines or arcs to the path

CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 160, 150);

Stanford CS193p
Fall 2011

Define a Path
Begin the path
CGContextBeginPath(context);

Move around, add lines or arcs to the path

CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 160, 150);
CGContextAddLineToPoint(context, 10, 150);

Stanford CS193p
Fall 2011

Define a Path
Begin the path
CGContextBeginPath(context);

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
CGContextClosePath(context); // not strictly required

CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 160, 150);
CGContextAddLineToPoint(context, 10, 150);

Stanford CS193p
Fall 2011

Define a Path
Begin the path
CGContextBeginPath(context);

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
CGContextClosePath(context); // not strictly required

Actually the above draws nothing (yet)!
You have to set the graphics state and then fill/stroke the above path to see anything.

CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 160, 150);
CGContextAddLineToPoint(context, 10, 150);

Stanford CS193p
Fall 2011

Define a Path
Begin the path
CGContextBeginPath(context);

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
CGContextClosePath(context); // not strictly required

Actually the above draws nothing (yet)!
You have to set the graphics state and then fill/stroke the above path to see anything.

CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 160, 150);
CGContextAddLineToPoint(context, 10, 150);

CGContextDrawPath(context, kCGPathFillStroke); // kCGPathFillStroke is a constant

[[UIColor greenColor] setFill]; // object-oriented convenience method (more in a moment)
[[UIColor redColor] setStroke];

Stanford CS193p
Fall 2011

Define a Path
It is also possible to save a path and reuse it
Similar functions to the previous slide, but starting with CGPath instead of CGContext
We won’t be covering those, but you can certainly feel free to look them up in the documentation

Stanford CS193p
Fall 2011

Graphics State
UIColor class for setting colors
UIColor *red = [UIColor redColor]; // class method, returns autoreleased instance
UIColor *custom = [[UIColor alloc] initWithRed:(CGFloat)red // 0.0 to 1.0
 blue:(CGFloat)blue
 green:(CGFloat)green
 alpha:(CGFloat)alpha]; // 0.0 to 1.0 (opaque)
[red setFill]; // fill color set in current graphics context (stroke color not set)
[custom set]; // sets both stroke and fill color to custom (would override [red setFill])

Drawing with transparency in UIView
Note the alpha above. This is how you can draw with transparency in your drawRect:.
UIView also has a backgroundColor property which can be set to transparent values.
Be sure to set @property BOOL opaque to NO in a view which is partially or fully transparent.
If you don’t, results are unpredictable (this is a performance optimization property, by the way).
The UIView @property CGFloat alpha can make the entire view partially transparent.

Stanford CS193p
Fall 2011

View Transparency
What happens when views overlap?
As mentioned before, subviews list order determine’s who’s in front
Lower ones (earlier in subviews array) can “show through” transparent views on top of them

Default drawing is opaque
Transparency is not cheap (performance-wise)

Also, you can hide a view completely by setting hidden property
@property (nonatomic) BOOL hidden;
myView.hidden = YES; // view will not be on screen and will not handle events
This is not as uncommon as you might think
On a small screen, keeping it de-cluttered by hiding currently unusable views make sense

Stanford CS193p
Fall 2011

Graphics State
Some other graphics state set with C functions, e.g. ...
CGContextSetLineWidth(context, 1.0); // line width in points (not pixels)
CGContextSetFillPattern(context, (CGPatternRef)pattern, (CGFloat[])components);

Stanford CS193p
Fall 2011

Graphics State
Special considerations for defining drawing “subroutines”
What if you wanted to have a utility method that draws something
You don’t want that utility method to mess up the graphics state of the calling method
Use push and pop context functions.

- (void)drawRect:(CGRect)aRect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 [[UIColor redColor] setFill];
 // do some stuff
 [self drawGreenCircle:context];
 // do more stuff and expect fill color to be red
}

- (void)drawGreenCircle:(CGContextRef)ctxt {
 UIGraphicsPushContext(ctxt);
 [[UIColor greenColor] setFill];
 // draw my circle
 UIGraphicsPopContext();
}

Stanford CS193p
Fall 2011

Drawing Text
Use UILabel to draw text, but if you feel you must ...
Use UIFont object in UIKit to get a font
UIFont *myFont = [UIFont systemFontOfSize:12.0];
UIFont *theFont = [UIFont fontWithName:@“Helvetica” size:36.0];
NSArray *availableFonts = [UIFont familyNames];

Then use special NSString methods to draw the text
NSString *text = ...;
[text drawAtPoint:(CGPoint)p withFont:theFont]; // NSString instance method
How much space will a piece of text will take up when drawn?
CGSize textSize = [text sizeWithFont:myFont]; // NSString instance method

You might be disturbed that there is a Foundation method for drawing (which is a UIKit thing).
But actually these NSString methods are defined in UIKit via a mechanism called categories.
Categories are an Objective-C way to add methods to an existing class without subclassing.
We’ll cover how (and when) to use this a bit later in this course.

Stanford CS193p
Fall 2011

Drawing Images
Use UIImageView to draw images, but if you feel you must ...
We’ll cover UIImageView later in the course.

Create a UIImage object from a file in your Resources folder
UIImage *image = [UIImage imageNamed:@“foo.jpg”];

Or create one from a named file or from raw data
(of course, we haven’t talked about the file system yet, but ...)
UIImage *image = [[UIImage alloc] initWithContentsOfFile:(NSString *)fullPath];
UIImage *image = [[UIImage alloc] initWithData:(NSData *)imageData];

Or you can even create one by drawing with CGContext functions
UIGraphicsBeginImageContext(CGSize);
// draw with CGContext functions
UIImage *myImage = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

Stanford CS193p
Fall 2011

Drawing Images
Now blast the UIImage’s bits into the current graphics context
UIImage *image = ...;
[image drawAtPoint:(CGPoint)p]; // p is upper left corner of the image
[image drawInRect:(CGRect)r]; // scales the image to fit in r
[image drawAsPatternInRect:(CGRect)patRect; // tiles the image into patRect

Aside: You can get a PNG or JPG data representation of UIImage
NSData *jpgData = UIImageJPEGRepresentation((UIImage *)myImage, (CGFloat)quality);
NSData *pngData = UIImagePNGRepresentation((UIImage *)myImage);

Stanford CS193p
Fall 2011

Next Time
Tomorrow
Source Control

Next Week
Protocols (a little more Objective C)
Demo of custom UIView
View Controller Lifecycle
Controllers of Controllers
Storyboarding
Universal Applications

