
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today: Media
UIImagePickerController
Getting still photos or video from the user (either from camera or photo library)

MPMovie[View]PlayerController
How to play videos

ALAssetsLibrary
How to store images or videos in the user’s photo album

Sounds
How to play simple sounds and record simple audio snippets

Stanford
CS193p

Fall 2010

UIImagePickerController
Modal view to get media from camera or photo library
Modal means you put it up with presentModalViewController:animated:

Usage
Create it with alloc/init and set delegate.
Configure it (source, kind of media, user editability).
Present it modally.
Respond to delegate method when user is done picking the media.

What the user can do depends on the platform
Some devices have cameras, some do not, some can record video, some can not.
As with all device-dependent API, we want to start by check what’s available.
+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)sourceType;

UIImagePickerControllerSourceTypePhotoLibrary
 Camera
 SavedPhotosAlbum Stanford

CS193p
Fall 2010

UIImagePickerController
But don’t forget that not every source type can give video
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;

Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this

You can get even more specific about front/rear cameras
(Though usually this is not necessary.)
+ (BOOL)isCameraDeviceAvailable:(UIImagePickerControllerCameraDevice)cameraDevice;

Either UIImagePickerControllerCameraDeviceFront or UIImagePickerControllerCameraDeviceRear.
Then check out more about each available camera:
+ (BOOL)isFlashAvailableForCameraDevice:(UIImagePickerControllerCameraDevice);
+ (NSArray *)availableCaptureModesForCameraDevice:(UIImagePickerControllerCameraDevice);

This array contains NSNumber objects with constants UIImagePic...lerCaptureModePhoto/Video. Stanford
CS193p

Fall 2010

UIImagePickerController
Set the source and media type you want in the picker
(From here out, UIImagePickerController will be abbreviated UIIPC for space reasons.)
UIIPC *picker = [[UIIPC alloc] init];
picker.delegate = self; // self will have to implement UINavigationControllerDelegate too
if ([UIIPC isSourceTypeAvailable:UIIPCSourceTypeCamera]) {
 picker.sourceType = UIIPCSourceTypeCamera;
} // else we’ll take what we can get (photo library by default)
NSString *desired = kUTTypeMovie; // e.g., could be kUTTypeImage instead, or check for both
if ([[UIIPC availableMediaTypesForSourceType:picker.sourceType] containsObject:desired]) {
 picker.mediaTypes = [NSArray arrayWithObject:desired];
 // proceed to put the picker up
} else {
 // fail, we can’t get the type of media we want from the source we want
}

Stanford
CS193p

Fall 2010

UIImagePickerController
Editability
@property BOOL allowsEditing;
If YES, then user will have opportunity to edit inside the picker.
When your delegate is notified that the user is done, you’ll get both raw and edited versions.

Limiting Video Capture
@property UIIPCQualityType qualityType;
UIIPCQualityTypeMedium // default
UIIPCQualityTypeHigh
UIIPCQualityType640x480
UIIPCQualityTypeLow

@property NSTimeInterval videoMaximumDuration;

Other
You can control which camera is used, how flash is used, etc., as well (or user can choose). Stanford

CS193p
Fall 2010

UIImagePickerController
Present the picker
[self presentModalViewController:picker animated:YES];
[picker release];

Delegate will be notified when user is done
- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // extract image/movie data/metadata here
 [self dismissModalViewControllerAnimated:YES];
}

What is in that info dictionary?
UIImagePickerControllerMediaType // kUTTypeImage or kUTTypeMovie
UIImagePickerControllerOriginalImage // UIImage
UIImagePickerControllerEditedImage // UIImage
UIImagePickerControllerCropRect // CGRect
UIImagePickerControllerMediaMetadata // Can be stored in saved photos album with data

Stanford
CS193p

Fall 2010

UIImagePickerController
Overlay View
@property UIView *cameraOverlayView;
Be sure to set this view’s frame properly.
Camera is always full screen (modal only, iPhone/iPod Touch only), [[UIScreen mainScreen] bounds].
But if you use the built-in controls at the bottom, you might want your view to be smaller.

Hiding the normal camera controls (at the bottom)
@property BOOL showsCameraControls;

Will leave a blank area at the bottom of the screen (camera’s aspect 4:3, not same as screen’s).
With no controls, you’ll need an overlay view with a “take picture” (at least) button.
That button should send - (void)takePicture to the picker.

You can zoom or translate the image while capturing
@property CGAffineTransform cameraViewTransform
For example, you might want to scale the image up to full screen (some of it will get clipped).

Stanford
CS193p

Fall 2010

MPMoviePlayer[View]Controller
Used to play back movies
Supports H.264 Baseline and MPEG-4 Part 2
- initWithContentsOfURL:(NSURL *)movieURL;

MPMoviePlayerViewController is presented modally full screen
You need to use a special modal presentation method in UIViewController (add via categories) ...
[self presentMoviePlayerViewControllerAnimated:(MPMovePlayerViewController *)controller];
And dismiss with this one ...
[self dismissMoviePlayerViewControllerAnimated];

Or you can create an MPMoviePlayerController and use its view
But only under certain controlled circumstances, namely ...
You can add it as a subview of a view you create, but it must fill that view’s bounds.
You cannot muck about with its subviews though you can add your own subviews to it.

Some videos on the web require credentials to play
Check the documentation for how to use NSURLCredential/ProtectionSpace/CredentialStorage.Stanford

CS193p
Fall 2010

ALAssetsLibrary
How do you store the chosen media?
You can just use the file system (especially if you want to control when it is deleted).
Or you can put it in the user’s saved photos album using the Assets Library framework.
ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];

[library writeImageToSavedPhotosAlbum:(CGImageRef)imageRef // ((UIImage *)image).CGImage
 metadata:(NSDictionary *)metadata // from info dictionary
 completionBlock:^(NSURL *assetURL, NSError *error) { }];
[library release];

Similar method available for video.
Note that this does its work in a thread (images are big and flash memory is slow).
It returns immediately and your completion block will be called when it is done.
User can then access the media from the Photos application.

Stanford
CS193p

Fall 2010

Sound
Numerous ways to manage media in iOS
Core Audio, AVFoundation, Media Player, OpenAL, etc.
We’re only going to cover simple audio playback/recording.

For simple sounds, there are two choices
System Sound API (for ultra-simple “sound effects”)
AVAudioPlayer/AVAudioRecorder

If you want to play songs from iPod Library ...
Use Media Player framework.
Basic idea is to put up an MPMediaPickerController or create your own MPMediaQuery.
Then use MPMusicPlayerController to play the media selected.

Stanford
CS193p

Fall 2010

Sound
Simplest sound playing API
For short, non-repeating, immediate play, no volume control. AIFF or WAV (uncompressed formats).

Register your sound with the system
SystemSoundID mySound;
NSString *soundFilePath [[NSBundle mainBundle] pathForResource:@“mySound” ofType:@“caf”];
NSURL *soundFileURL = [NSURL URLForString:soundFilePath];
AudioServicesCreateSystemSoundID((CFURLRef)soundFileURL, &mySound);

Now play the sound whenever you want
AudioServicesPlaySystemSound(mySound);

Free the sound when you are done using it
AudioServicesDisposeSystemSound(mySound);

Vibrate
AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
or AudioServicesPlayAlertSound(mySound); // depends on “vibrate with ring” setting

Stanford
CS193p

Fall 2010

Sound
Creating uncompressed sounds from compressed ones
i.e. sounds suitable for use with the system sound API
/usr/bin/afconvert -f aiff -d BE16 input.mp3 output.aif

Stanford
CS193p

Fall 2010

AVAudioPlayer
For more sophisticated (but still lightweight) sound playing
Longer sounds (e.g. ambient music).
Looping, seeking, playing and pausing.
Metering.
Playing multiple sounds at the same time (mixed).
Object-oriented API.
Many more file formats supported.

Allocate and init using the sound file’s URL
NSString *soundFilePath = [[NSBundle mainBundle] pathForResource:@“mySound” ofType:@“mp3”];
NSURL *soundFileURL = [NSURL URLForString:soundFilePath];
AVAudioPlayer *player = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURL];

Now start playing (returns immediately)
[player play];
[player pause];

Stanford
CS193p

Fall 2010

AVAudioPlayer
Scrubbing
Moving around in the sound file (fast forward and rewind).
- (void)scrub:(UISlider *)sender {
 player.currentTime = player.duration * sender.value; // assuming slider goes from 0 to 1
}

Volume
player.volume = 0.75; // from 0 to 1

Finding out what’s going on with the AVPlayer’s delegate
- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)sender successfully:(BOOL)success;
- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)sender; // phone call came in, pause
- (void)audioPlayerEndInterruption:(AVAudioPlayer *)sender; // phone call ended
- (void)audioPlayerDecodeErrorDidOccur:(AVAudioPlayer *)sender error:(NSError *)error;

Stanford
CS193p

Fall 2010

AVAudioRecorder
Very similar API to AVAudioPlayer
Allocate and init using the sound file’s URL
NSURL *soundFileURL = ...; // usually in your Documents directory (or Temporary)
AVAudioRecorder *recorder = [[AVAudioRecorder alloc] initWithURL:soundFileURL
 settings:(NSDictionary *)settings
 error:(NSError **)errorOut];

settings includes sample rate, number of channels, etc., and can be nil for defaults.

Send record message to start recording
Example, here’s code that a record/pause toggle button could invoke ...
if (!recorder.recording) {
 [recorder record];
} else {
 [recorder pause];
}

Stanford
CS193p

Fall 2010

AVAudioRecorder
How long have we been recording for?
@property (readonly) NSTimeInterval currentTime; // note readonly, can’t rewind

Meters
Not cheap, so only do it if the information is going to be valuable to the user.
recorder.meteringEnabled = YES;
[recorder updateMeters];
float peakPower = [recorder peakPowerForChannel:0];
float averagePower = [recorder averagePowerForChannel:0];

Stanford
CS193p

Fall 2010

Coming Up
Tomorrow
Friday Section: Evan Doll

Next week
Holiday: No Lectures

Week after
Guest Lectures: Accessibility in iOS + TBD

Week after that
Final project presentation on Monday (code due the day before, slides a few days before).

Stanford
CS193p

Fall 2010

