
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today
Blocks
Language syntax for declaring a function “on the fly.”

Grand Central Dispatch
C API for leveraging blocks to make writing multithreaded code much easier.

Stanford
CS193p

Fall 2010

Blocks
What is a block?
A block of code (i.e. a sequence of statements inside {}).
Usually included “in-line” with the calling of method that is going to use the block of code.
Very smart about local variables, referenced objects, etc.

What does it look like?
Here’s an example of calling a method that takes a block as an argument.
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key]) {
 *stop = YES;
 }
}];
This NSLog()s every key and value in aDictionary (but stops if the key is ENOUGH).

Blocks start with the magical character caret ^
Then it has (optional) arguments in parentheses, then {, then code, then }.

Stanford
CS193p

Fall 2010

Blocks
Can use local variables declared before the block inside the block
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 }
}];

But they are read only!
BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // ILLEGAL
 }
}];

Stanford
CS193p

Fall 2010

Blocks
Unless you mark the local variable as __block
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

Or if the variable is an instance variable
Because instance variables are really just a special case of an object being accessed in the block.
Let’s talk some more about that ...

Stanford
CS193p

Fall 2010

Blocks
So what about objects accessed inside the block?
NSString *stopKey = [@“Enough” uppercaseString];
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([stopKey isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);
stopKey is automatically retained until the block goes out of scope or the block itself is released.
Why does that matter?
And what does it mean for “the block itself to be released?”

Stanford
CS193p

Fall 2010

Blocks
Imagine we added the following method to CalculatorBrain
- (void)addUnaryOperation:(NSString *)operation whichExecutesBlock:...;
This method adds another operation to the brain like sqrt which you get to specify the code for.
For now, we’ll not worry about the syntax for passing the block.
(but the mechanism for that is the same as for defining enumerateKeysAndObjectsUsingBlock:).

That block we pass in will not be executed until much later
i.e. it will be executed when that “operation” is pressed in some UI somewhere.

Example call of this ...
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}];
Imagine if secret was not automatically retained here.
What would happen later when this block executed (when MoLtUaE operation was pressed)?
Bad things. Luckily, secret is automatically retained. Stanford

CS193p
Fall 2010

Blocks
How would we define that method?
Blocks are kind of like “objects” with an unusual syntax for declaring variables that hold them.

Usually if we are going to store a block in a variable, we typedef a type for that variable, e.g.,
typedef double (^unary_operation_t)(double op);
This declares a type called “unary_operation_t” for variables which can store a block.
(specifically, a block which takes a double as its only argument and returns a double)

Then we could declare a variable, square, of this type and give it a value ...
unary_operation_t square;
square = ^(double operand) {
 return operand * operand;
}
And then use the variable square like this ...
double squareOfFive = square(5.0); // squareOfFive would have the value 25.0 after this

(You don’t have to typedef, for example, the following is also a legal way to create square ...)
double (^square)(double op) = ^(double op) { return op * op; };

Stanford
CS193p

Fall 2010

Blocks
We could then use the unary_operation_t to define our method
typedef double (^unary_operation_t)(double op);
- (void)addUnaryOperation:(NSString *)op whichExecutesBlock:(unary_operation_t)opBlock {
 [operationDictionary setObject:opBlock forKey:op];
}
Notice that we can treat the block somewhat like an object (adding it to a dictionary, in fact).
The only “messages” we might send to a block, though, are copy, retain, release or autorelease.
Unfortunately, blocks are allocated initially on the stack (they’re not really “objects” in that way).
To get a heap-allocated block, we’d send [opBlock copy] as our argument to setObject:forKey:.
We’d also want to autorelease that copy (since it gets retained by the dictionary).

Later in our CalculatorBrain we could use an operation added with the method above like this ...
- (double)performOperation:(NSString *)operation
{
 unary_operation_t unaryOp = [operationDictionary objectForKey:operation];
 if (unaryOp) {
 self.operand = unaryOp(self.operand);
 }
 . . .
}

Stanford
CS193p

Fall 2010

Blocks
Back to our calling of this method
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}];
We said earlier that the object secret will be retained until the block is released.
So when will this block be released?
The block will be released if and when CalculatorBrain removes it from its operationDictionary.
Or when the CalculatorBrain is released (it will release operationDictionary in its dealloc).

As you might expect, if you access an instance variable in your block, self will be retained.

Stanford
CS193p

Fall 2010

Blocks
Back to blocks as method arguments
When a block is an argument to a method and is used immediately, often there is no typedef.

Here is the declaration of the dictionary enumerating method we showed earlier ...
- (void)enumerateKeysAndObjectsUsingBlock:(void (^)(id key, id obj, BOOL *stop))block;
Notice, no typedef for this block.
The syntax is exactly the same as the typedef except that the name of the typedef is not there.

For reference, here’s what a typedef for this argument would look like this ...
typedef void (^enumeratingBlock)(id key, id obj, BOOL *stop);
(i.e. the underlined part is not used in the method argument)

Stanford
CS193p

Fall 2010

Blocks
Some shorthand allowed when defining a block
(“Defining” means you are writing the code between the {}.)
You do not have to declare the return type if it can be inferred from your code in the block.
If there are no arguments to the block, you do not need to have any parentheses.
Recall this code (no return type, see?):
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}];

Another example ...
[UIView animateWithDuration:5.0 animations:^{
 view.opacity = 0.5;
}];
No arguments, so ^{ } is all that is needed.

Stanford
CS193p

Fall 2010

Blocks
When do we use blocks in iOS?
Enumeration
View Animations (more on that later in the course)
Sorting (sort this thing using a block as the comparison method)
Notification (when something happens, execute this block)
Error handlers (if an error happens while doing this, execute this block)
Completion handlers (when you are done doing this, execute this block)

And a super-important use: Multithreading
With Grand Central Dispatch API

Stanford
CS193p

Fall 2010

Grand Central Dispatch
GCD is a C API

The basic idea is that you have queues of operations
The operations are specified using blocks.
Most queues run their operations serially (a true “queue”).
We’re only going to talk about serial queues today.

The system runs operations from queues in separate threads
Though there is no guarantee about how/when this will happen.
All you know is that your queue’s operations will get run (in order) at some point.
The good thing is that if your operation blocks, only that queue will block.
Other queues will continue to run.

So how can we use this to our advantage?
Get blocking activity (e.g. network) out of our user-interface (main) thread.
Do time-consuming activity concurrently in another thread. Stanford

CS193p
Fall 2010

Grand Central Dispatch
Important functions in this C API
Creating and releasing queues
dispatch_queue_t dispatch_queue_create(const char *label, NULL);
void dispatch_release(dispatch_queue_t);

Putting blocks in the queue
typedef void (^dispatch_block_t)(void);
void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

Getting the current or main queue
dispatch_queue_t dispatch_get_current_queue();
dispatch_queue_t dispatch_get_main_queue();

Stanford
CS193p

Fall 2010

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:photo.URL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
}

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:photo.URL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Problem! UIKit calls can only happen in the main thread!

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:photo.URL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

dispatch_async(dispatch_get_main_queue(), ^{

});

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
 dispatch_async(downloadQueue, ^{
 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:
 dispatch_async(dispatch_get_main_queue(), ^{
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
 });
 });
}

Problem! NSManagedObjectContext is not thread safe,
 so we can’t call photo.URL in downloadQueue’s thread!

photo.URL];

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
 dispatch_async(downloadQueue, ^{
 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:
 dispatch_async(dispatch_get_main_queue(), ^{
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
 });
 });
}

url];

NSString *url = photo.URL;

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
 dispatch_async(downloadQueue, ^{
 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:
 dispatch_async(dispatch_get_main_queue(), ^{
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
 });
 });

Problem! This leaks. We need to release the downloadQueue.

url];

NSString *url = photo.URL;

}

Grand Central Dispatch
What does it look like to call these?
Example ... let’s make our Flickr fetch of an image in PhotoViewController work properly.
- (void)viewWillAppear:(BOOL)animated
{

Stanford
CS193p

Fall 2010

 dispatch_queue_t downloadQueue = dispatch_queue_create(“Flickr downloader”, NULL);
 dispatch_async(downloadQueue, ^{
 NSData *imageData = [FlickrFetcher imageDataForPhotoWithURLString:
 dispatch_async(dispatch_get_main_queue(), ^{
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
 });
 });

url];

NSString *url = photo.URL;

}
dispatch_release(downloadQueue); // won’t actually go away until queue is empty

Coming Up
Demo
Add a PhotoViewController to Shutterbug
Stop it from blocking the main thread

Homework
Current homework still due on Wednesday
Next homework might be assigned next Tuesday, due the following Monday

Next Lecture
CoreLocation and MapKit

Stanford
CS193p

Fall 2010

