
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
Persistence
How to make things stick around between launchings of your app (besides NSUserDefaults)

Stanford CS193p
Fall 2011

Persistence
Property Lists
Use writeToURL:atomically: and initWithContentsOfURL: in NSArray or NSDictionary
Or NSUserDefaults if appropriate.
Also NSPropertyListSerialization converts Property Lists to/from NSData.

Archiving Objects
Storing things in the Filesystem
SQLite
Core Data
Next week

Stanford CS193p
Fall 2011

Archiving
There is a mechanism for making ANY object graph persistent
Not just graphs with NSArray, NSDictionary, etc. in them.

For example, the view hierarchies you build in Interface Builder
Those are obviously graphs of very complicated objects.

Requires all objects in the graph to implement NSCoding protocol
- (void)encodeWithCoder:(NSCoder *)coder;
- initWithCoder:(NSCoder *)coder;

It is extremely unlikely you will use this in this course
Certainly not in the homework assignments.
But almost certainly not in your Final Project either.
There are other, simpler, (or more appropriate), persistence mechanisms (more on this later).

Stanford CS193p
Fall 2011

Archiving
Object graph is saved by sending all objects encodeWithCoder:
- (void)encodeWithCoder:(NSCoder *)coder {
 [super encodeWithCoder:coder];
 [coder encodeFloat:scale forKey:@“scale”];
 [coder encodeCGPoint:origin forKey:@“origin”];
 [coder encodeObject:expression forKey:@“expression”];
}
Absolutely, positively must call super’s version or your superclass’s data won’t get written out!

Object graph is read back in with alloc/initWithCoder:
- initWithCoder:(NSCoder *)coder {
 self = [super initWithCoder:coder];
 scale = [coder decodeFloatForKey:@“scale”];
 expression = [coder decodeObjectForKey:@“expression”];
 origin = [coder decodeCGPointForKey:@“origin”]; // note that order does not matter
}

Stanford CS193p
Fall 2011

Archiving
NSKeyed[Un]Archiver classes used to store/retrieve graph
Storage and retrieval is done to NSData objects.
NSKeyedArchiver stores an object graph to an NSData ...
+ (NSData *)archivedDataWithRootObject:(id <NSCoder>)rootObject;
NSKeyedUnarchiver retrieves an object graph from an NSData ...
+ (id <NSCoder>)unarchiveObjectWithData:(NSData *)data;

What do you think this code does?
id <NSCoder> object = ...;
NSData *data = [NSKeyedArchiver archivedDataWithRootObject:object];
id <NSCoder> dup = [NSKeyedArchiver unarchiveObjectWithData:data];
It makes a “deep copy” of object.
But beware, you may get more (or less) than you bargained for.
Object graphs like “view hierarchies” can be very complicated.
For example, does a view’s superview get archived?

Stanford CS193p
Fall 2011

File System
Your application sees iOS file system like a normal Unix filesystem
It starts at /.
There are file protections, of course, like normal Unix, so you can’t see everything.

You can only WRITE inside your “sandbox”
Why?
Security (so no one else can damage your application)
Privacy (so no other applications can view your application’s data)
Cleanup (when you delete an application, everything its ever written goes with it)

So what’s in this “sandbox”
Application bundle directory (binary, .storyboards, .jpgs, etc.). This directory is NOT writeable.
Documents directory. This is where you store permanent data created by the user.
Caches directory. Store temporary files here (this is not backed up by iTunes).
Other directories (check out NSSearchPathDirectory in the documentation).

Stanford CS193p
Fall 2011

File System
What if you want to write to a file you ship with your app?
Copy it out of your application bundle into the documents (or other) directory so it’s writeable.

How do you get the paths to these special sandbox directories?
Use this NSFileManager method ...
- (NSArray *)URLsForDirectory:(NSSearchPathDirectory)directory // see below
 inDomains:(NSSearchPathDomainMask)domainMask; // NSUserDomainMask

Notice that it returns an NSArray of paths (not a single path)
Since the file system is limited in scope, there is usually only one path in the array in iOS.
No user home directory, no shared system directories (for the most part), etc.
Thus you will almost always just use lastObject (for simplicity).

Examples of NSSearchPathDirectory values
NSDocumentsDirectory, NSCachesDirectory, NSAutosavedInformationDirectory, etc.

Stanford CS193p
Fall 2011

File System
NSFileManager
Provides utility operations (reading and writing is done via NSData, et. al.).
Check to see if files exist; create and enumerate directories; move, copy, delete files; etc.
Just alloc/init an instance and start performing operations.
Thread safe (as long as a given instance is only ever used in one thread).
NSFileManager *manager = [[NSFileManager alloc] init];
- (BOOL)createDirectoryAtPath:(NSString *)path
 withIntermediateDirectories:(BOOL)createIntermediates
 attributes:(NSDictionary *)attributes // permissions, etc.
 error:(NSError **)error;
- (BOOL)isReadableFileAtPath:(NSString *)path;
- (NSArray *)contentsOfDirectoryAtPath:(NSString *)path error:(NSError **)error;
Has a delegate with lots of “should” methods (to do an operation or proceed after an error).
And plenty more. Check out the documentation.

Stanford CS193p
Fall 2011

File System
NSString
Path construction methods and reading/writing strings to files.
- (NSString *)stringByAppendingPathComponent:(NSString *)component;
- (NSString *)stringByDeletingLastPathComponent;
- (BOOL)writeToFile:(NSString *)path
 atomically:(BOOL)flag
 encoding:(NSStringEncoding)encoding // e.g. ASCII, ISOLatin1, etc.
 error:(NSError **)error;
- (NSString *)stringWithContentsOfFile:(NSString *)path
 usedEncoding:(NSStringEncoding *)encoding
 error:(NSError **)error;
And plenty more. Check out the documentation.

Stanford CS193p
Fall 2011

SQLite
SQL in a single file
Fast, low memory, reliable.
Open Source, comes bundled in iOS.
Not good for everything (e.g. not video or even serious sounds/images).
Not a server-based technology (not great at concurrency, but usually not a big deal on a phone).

API
int sqlite3_open(const char *filename, sqlite3 **db); // get a database into db
int sqlite3_exec(sqlite3 *db, // execute SQL statements
 const char *sql,
 int (*callback)(void *, int, char **, char **),
 void *context,
 char **error);
int mycallback(void *context, int count, char **values, char **cols); // data returned
int sqlite3_close(sqlite3 *db); // close the database

Stanford CS193p
Fall 2011

Coming Up
Next Week
Core Data (object-oriented database)

Tomorrow’s Section
Time Profiler
How to measure the performance of your application

