
CS193P - Lecture 18
iPhone Application Development

Unit Testing
Fun with Objective-C
Localization
Mailbag

1Monday, March 15, 2010

Unit Testing

2Monday, March 15, 2010

What Are Unit Tests?
• Test specific areas of functionality
• Minimal external dependencies
• Run frequently during development

3Monday, March 15, 2010

Who Writes Unit Tests?
• You do!
• Ideally written along with new code
• Test-driven development

■ Write tests first
■ Fill in the implementation until tests pass
■ Rinse & repeat

4Monday, March 15, 2010

Running Unit Tests
• Automate so you don't have to explicitly run tests
• Many testing frameworks can run tests every time you build

• Just as compiler checks syntax, unit tests check semantics

5Monday, March 15, 2010

Why Unit Test?

6Monday, March 15, 2010

Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

6Monday, March 15, 2010

Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

• Find bugs early
■ Bugs are easier (and cheaper) to fix early in development

6Monday, March 15, 2010

Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

• Find bugs early
■ Bugs are easier (and cheaper) to fix early in development

• Avoid regressions
■ Ensure that changing one piece of code doesn't break another

6Monday, March 15, 2010

Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

• Find bugs early
■ Bugs are easier (and cheaper) to fix early in development

• Avoid regressions
■ Ensure that changing one piece of code doesn't break another

• Document your code
■ How is a method intended to be used? Check out the tests...

6Monday, March 15, 2010

Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

• Find bugs early
■ Bugs are easier (and cheaper) to fix early in development

• Avoid regressions
■ Ensure that changing one piece of code doesn't break another

• Document your code
■ How is a method intended to be used? Check out the tests...

• Encourage good design
■ Spaghetti code is hard to test! Design with testability in mind

6Monday, March 15, 2010

Unit Testing Frameworks
• Family of similar frameworks for testing various languages

■ JUnit, NUnit, PyUnit...

• OCUnit for Objective-C
■ Ships with Mac OS X developer tools, integrates with Xcode
■ Included with iPhone SDK as of 2.2

7Monday, March 15, 2010

Basics of OCUnit
• SenTestCase is abstract test case superclass
• Automatically runs methods that begin with "test"
• Macros for asserting conditions during tests

■ STAssertNotNil(someObject, @"Some object was nil");
■ See SenTestCase.h for more

• -setUp and -tearDown methods run before and after each test

8Monday, March 15, 2010

Defining A New Test Case Class

9Monday, March 15, 2010

Defining A New Test Case Class
#import <SenTestingKit/SenTestingKit.h>

@class Foo;

@interface FooTests : SenTestCase {
Foo *foo;

}
@end

9Monday, March 15, 2010

Preparing Tests

10Monday, March 15, 2010

Preparing Tests
@implementation FooTests

- (void)setUp {
// Every test will have its own Foo instance
foo = [[Foo alloc] init];

}

- (void)tearDown {
[foo release];

}

...

@end

10Monday, March 15, 2010

Adding Tests

11Monday, March 15, 2010

Adding Tests
@implementation FooTests

...

- (void)testCreateFoo {
STAssertNotNil(foo, @"Couldn't create Foo");

}

- (void)testSetBar {
Bar *bar = ...;
foo.bar = bar;
STAssertEqualObjects(foo.bar, bar, @"Couldn't set foo.bar");

}

...

@end

11Monday, March 15, 2010

Testing Error Conditions

12Monday, March 15, 2010

Testing Error Conditions
@implementation FooTests

...

- (void)testOutOfBoundsAccess {
STAssertNil([foo barAtIndex:99], @"Index 99 should be nil");

}

...

@end

12Monday, March 15, 2010

Demo:
Unit Testing an iPhone App

13Monday, March 15, 2010

When Does Unit Testing Make Sense?

14Monday, March 15, 2010

When Does Unit Testing Make Sense?
• Always be conscious of the return on investment

■ Benefit of the test versus time to create and maintain?

14Monday, March 15, 2010

When Does Unit Testing Make Sense?
• Always be conscious of the return on investment

■ Benefit of the test versus time to create and maintain?

• Some types of code are notoriously difficult to test
■ Networking
■ Databases
■ Often possible to test a subset of behavior and still benefit

14Monday, March 15, 2010

Unit Testing Philosophy

15Monday, March 15, 2010

Unit Testing Philosophy
• Keep tests short, lightweight, fast

15Monday, March 15, 2010

Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior

15Monday, March 15, 2010

Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior
• Find a new bug? Write a new test before you fix it

15Monday, March 15, 2010

Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior
• Find a new bug? Write a new test before you fix it
• Complement (rather than replace) other types of tests

■ http://www.friday.com/bbum/2005/09/24/unit-testing/

15Monday, March 15, 2010

Fun with Objective-C

16Monday, March 15, 2010

The Objective-C Runtime
• How does OCUnit find all the methods that begin with “test”?
• Any other cool tricks?

17Monday, March 15, 2010

/usr/include/objc

18Monday, March 15, 2010

/usr/include/objc
• <objc/objc.h>

■ id, Nil, nil, BOOL, YES, NO

18Monday, March 15, 2010

/usr/include/objc
• <objc/objc.h>

■ id, Nil, nil, BOOL, YES, NO

• <objc/message.h>
■ objc_msgSend() and friends

18Monday, March 15, 2010

/usr/include/objc
• <objc/objc.h>

■ id, Nil, nil, BOOL, YES, NO

• <objc/message.h>
■ objc_msgSend() and friends

• <objc/runtime.h>
■ Inspect and manipulate classes, protocols, methods
■ Add and replace methods at runtime

18Monday, March 15, 2010

Inspecting Methods

19Monday, March 15, 2010

Inspecting Methods
• Copy all methods for a class
Method *class_copyMethodList(Class cls,
 unsigned int *outCount);

19Monday, March 15, 2010

Inspecting Methods
• Copy all methods for a class

• Get attributes for a method

Method *class_copyMethodList(Class cls,
 unsigned int *outCount);

SEL method_getName(Method m);
IMP method_getImplementation(Method m);
char *method_copyReturnType(Method m);
...

19Monday, March 15, 2010

Demo:
Inspecting Methods

20Monday, March 15, 2010

Playing With Fire

21Monday, March 15, 2010

Playing With Fire
• Adding a method to a class
BOOL class_addMethod(Class cls, SEL name, IMP imp,
 const char *types);

21Monday, March 15, 2010

Playing With Fire
• Adding a method to a class

• Replacing the implementation for a method

BOOL class_addMethod(Class cls, SEL name, IMP imp,
 const char *types);

IMP method_setImplementation(Method method, IMP imp);

21Monday, March 15, 2010

Playing With Fire
• Adding a method to a class

• Replacing the implementation for a method

• Method swizzling

BOOL class_addMethod(Class cls, SEL name, IMP imp,
 const char *types);

IMP method_setImplementation(Method method, IMP imp);

void method_exchangeImplementations(Method m1, Method m2);

21Monday, March 15, 2010

Method Swizzling

22Monday, March 15, 2010

Method Swizzling
• What if you want to override a method in a category while

still making use of the original method?

22Monday, March 15, 2010

Method Swizzling
• What if you want to override a method in a category while

still making use of the original method?
■ Can’t call super, a category isn’t a subclass

22Monday, March 15, 2010

Method Swizzling
• What if you want to override a method in a category while

still making use of the original method?
■ Can’t call super, a category isn’t a subclass

• Define a new method, swizzle it into place

22Monday, March 15, 2010

Method Swizzling
• What if you want to override a method in a category while

still making use of the original method?
■ Can’t call super, a category isn’t a subclass

• Define a new method, swizzle it into place
Method existingMethod = ...;
Method fancyNewMethod = ...;
method_exchangeImplementations(existingMethod, fancyNewMethod);

22Monday, March 15, 2010

Method Swizzling
• What if you want to override a method in a category while

still making use of the original method?
■ Can’t call super, a category isn’t a subclass

• Define a new method, swizzle it into place
Method existingMethod = ...;
Method fancyNewMethod = ...;
method_exchangeImplementations(existingMethod, fancyNewMethod);

- (void)fancyNewMethod
{

// This looks like it will cause an infinite loop...
// Once swizzled, it will actually invoke -existingMethod!
[self fancyNewMethod];

// Perform additional work here
}

22Monday, March 15, 2010

Demo:
Method Swizzling

23Monday, March 15, 2010

Why is this dangerous?

24Monday, March 15, 2010

Why is this dangerous?
• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?

24Monday, March 15, 2010

Why is this dangerous?
• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?

• Can cause unexpected behavior, bizarre bugs, crashes
■ This has caused some popular apps to break on iPhone OS 3.0

24Monday, March 15, 2010

Why is this dangerous?
• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?

• Can cause unexpected behavior, bizarre bugs, crashes
■ This has caused some popular apps to break on iPhone OS 3.0

• Writing “clever” code is fun until you have to debug it

24Monday, March 15, 2010

Why is this dangerous?
• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?

• Can cause unexpected behavior, bizarre bugs, crashes
■ This has caused some popular apps to break on iPhone OS 3.0

• Writing “clever” code is fun until you have to debug it
• Never ship an app that swizzles methods on system classes

24Monday, March 15, 2010

Objective-C 2.0 Runtime Reference
• http://developer.apple.com/DOCUMENTATION/Cocoa/

Reference/ObjCRuntimeRef/Reference/reference.html

25Monday, March 15, 2010

class-dump

26Monday, March 15, 2010

class-dump
• Inspect the classes and methods of an Objective-C binary

26Monday, March 15, 2010

class-dump
• Inspect the classes and methods of an Objective-C binary
• Fascinating to see how a complex application is architected

■ Especially one that you didn’t write!

26Monday, March 15, 2010

class-dump
• Inspect the classes and methods of an Objective-C binary
• Fascinating to see how a complex application is architected

■ Especially one that you didn’t write!

• As usual, this can be used for evil purposes as well
■ Discover and use private methods in a framework

26Monday, March 15, 2010

“Calling unpublished APIs
is like jaywalking...”

27Monday, March 15, 2010

“Calling unpublished APIs
is like jaywalking across 280”

28Monday, March 15, 2010

The Problem with Using Private APIs

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

• Not just because Apple wants to hide cool stuff from you

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

• Not just because Apple wants to hide cool stuff from you
• If your app depends on a private API that goes away...

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

• Not just because Apple wants to hide cool stuff from you
• If your app depends on a private API that goes away...

■ At best, your app won’t work correctly anymore

29Monday, March 15, 2010

The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

• Not just because Apple wants to hide cool stuff from you
• If your app depends on a private API that goes away...

■ At best, your app won’t work correctly anymore
■ More often, your app will just crash

29Monday, March 15, 2010

Localization

30Monday, March 15, 2010

Your International Application
• Multiple languages and locales in a single built application
• Keep localized resources separate from everything else

■ Strings
■ Images
■ User interfaces (in NIBs)

31Monday, March 15, 2010

Where Do Localized Resources Go?
• MyApp.app/

■ MyApp
■ English.lproj/

■ Localizable.strings
■ MyView.nib

■ Japanese.lproj/
■ Localizable.strings
■ MyView.nib

32Monday, March 15, 2010

Two Steps
• Internationalization (i18n)

■ Prepare your app to be used in different languages and locales

• Localization (l10n)
■ Add localized data for specific languages and locales

33Monday, March 15, 2010

NSString to the Rescue
• Interconverts with dozens of encodings
• Saves you from having to deal with complexities of text
• Remember encoding when reading data from disk or web

- (id)initWithData:(NSData *)data
 encoding:(NSStringEncoding)encoding;

34Monday, March 15, 2010

Localized Strings
• For user-visible strings in your application code
• Map from an unlocalized key to a localized string
• Stored in .strings files

■ Key-value pairs
■ Use UTF-16 for encoding

35Monday, March 15, 2010

Strings File Example
• en.lproj/Greetings.strings

"Hello" = "Hello";
"Welcome to %@" = "Welcome to %@";
"Blah %@ blah %@!" = "Blah %@ blah %@";

• fr.lproj/Greetings.strings

"Hello" = "Bonjour";
"Welcome to %@" = "Bienvenue a %@";
"Blah %@ blah %@" = "Blah %2$@ %1$@ blah";

36Monday, March 15, 2010

Accessing Localized Strings
// By default, uses Localizable.strings
NSLocalizedString(@"Hello", @"Greeting for welcome screen");

// Specify a table, uses Greetings.strings
NSLocalizedStringFromTable(@"Hello", @"Greetings",
 @"Greeting for welcome screen");

37Monday, March 15, 2010

genstrings
• Tool to scan your code and produce a .strings file
• Inserts comments found in code as clues to localizer
• Run the tool over your *.m files

38Monday, March 15, 2010

Other Resources
• NSBundle resource methods automatically use the best

available localization
• Nib loading does the same

39Monday, March 15, 2010

Internationalizing NIBs
• Plan for different string lengths in different languages

■ Good idea to start with German...

40Monday, March 15, 2010

Localizing a Resource

41Monday, March 15, 2010

Localizing a Resource

41Monday, March 15, 2010

Localizing a Resource

41Monday, March 15, 2010

NSLocale
• Measurements
• Currency
• Number formatting
• Calendar and date format
• Country information

42Monday, March 15, 2010

Opening the Mailbag...

43Monday, March 15, 2010

44Monday, March 15, 2010

44Monday, March 15, 2010

“How do I launch my app in
landscape orientation?”

45Monday, March 15, 2010

Launching Your App in Landscape

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

■ Support the specified orientation in your view controller

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

■ Support the specified orientation in your view controller
■ Override -shouldAutorotateToInterfaceOrientation:

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

■ Support the specified orientation in your view controller
■ Override -shouldAutorotateToInterfaceOrientation:
■ Return YES to indicate interface orientations that you support

46Monday, March 15, 2010

Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

■ Support the specified orientation in your view controller
■ Override -shouldAutorotateToInterfaceOrientation:
■ Return YES to indicate interface orientations that you support

• Works on iPhone OS 2.1 or later

46Monday, March 15, 2010

47Monday, March 15, 2010

Demo:
Launching in Landscape

48Monday, March 15, 2010

“How can I customize UIKit
views and controls?”

49Monday, March 15, 2010

Customizing UIKit Views

50Monday, March 15, 2010

Customizing UIKit Views
• Some classes are designed to be totally customizable

■ UIButton
■ UITableView

50Monday, March 15, 2010

Customizing UIKit Views
• Some classes are designed to be totally customizable

■ UIButton
■ UITableView

• Many classes have limited customizability
■ UINavigationBar
■ UISlider

50Monday, March 15, 2010

Customizing UIKit Views
• Some classes are designed to be totally customizable

■ UIButton
■ UITableView

• Many classes have limited customizability
■ UINavigationBar
■ UISlider

• Other classes are not customizable
■ UISwitch
■ UITabBar

50Monday, March 15, 2010

What’s Safe to Customize?
• Look for methods for customizing appearance

■ UIButton: background image
■ UINavigationBar: style, tint, translucency
■ UITableView: delegate methods for appearance

• You can always create your own UIView or UIControl subclass
■ Handle touches
■ Custom drawing

51Monday, March 15, 2010

Respecting the View Hierarchy
• Internal view hierarchies are always subject to change

■ Navigation bar
■ Navigation and tab bar controllers
■ Image picker controller

• Making assumptions is unsafe and will likely break your app
■ Don’t manipulate undocumented subviews of system views
■ Don’t add your own custom subviews

• You want your application to be future-ready

52Monday, March 15, 2010

“Should I create my views using
Interface Builder or in code?”

53Monday, March 15, 2010

When to Use Interface Builder
• Almost always recommended
• Especially useful when creating a view with many subviews
• Not as useful when dealing with just a single view

■ Table views

• Remember: one view controller subclass, one NIB
■ Make connections to view controller via File’s Owner

54Monday, March 15, 2010

Nibs and Memory Management

55Monday, March 15, 2010

Nibs and Memory Management
• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading

55Monday, March 15, 2010

Nibs and Memory Management
• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading

55Monday, March 15, 2010

Nibs and Memory Management
• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading

55Monday, March 15, 2010

Nibs and Memory Management
• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading

• IBOutlets are retained by default
■ Release them in -dealloc even if you don’t have a setter!
■ Implement or synthesize a non-retained setter if desired

55Monday, March 15, 2010

“Where can I get cool icons for
my toolbar or tab bar items?”

56Monday, March 15, 2010

Toolbar and Tab Bar Images
• Images should be about 30 x 30 pixels
• PNG with alpha channel
• Used as a mask by UIKit for drawing with system colors

57Monday, March 15, 2010

• Glyphish, by Joseph Wain: http://www.glyphish.com
• Creative Commons License

■ *Free to use, share, or remix with attribution

Some Great Free* Icons

58Monday, March 15, 2010

• Glyphish, by Joseph Wain: http://www.glyphish.com
• Creative Commons License

■ *Free to use, share, or remix with attribution

Some Great Free* Icons

58Monday, March 15, 2010

“Can I build Mac apps now that
I know iPhone development?”

59Monday, March 15, 2010

Building iPhone & Mac OS X Apps

60Monday, March 15, 2010

Building iPhone & Mac OS X Apps
• At this point, you’re familiar with

■ Objective-C language
■ Cocoa Touch frameworks
■ Object-oriented design patterns
■ Interface Builder and NIBs

60Monday, March 15, 2010

Building iPhone & Mac OS X Apps
• At this point, you’re familiar with

■ Objective-C language
■ Cocoa Touch frameworks
■ Object-oriented design patterns
■ Interface Builder and NIBs

• Developing for the Mac desktop is within your reach!
■ First few lectures of CS193P and CS193E are identical

60Monday, March 15, 2010

Building iPhone & Mac OS X Apps
• At this point, you’re familiar with

■ Objective-C language
■ Cocoa Touch frameworks
■ Object-oriented design patterns
■ Interface Builder and NIBs

• Developing for the Mac desktop is within your reach!
■ First few lectures of CS193P and CS193E are identical

• Big difference is Cocoa vs. Cocoa Touch
■ Many UIKit and AppKit classes are similar

60Monday, March 15, 2010

