
CS193P - Lecture 18
iPhone Application Development

Unit Testing
Fun with Objective-C
Localization
Mailbag
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What Are Unit Tests?
• Test specific areas of functionality
• Minimal external dependencies
• Run frequently during development
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Who Writes Unit Tests?
• You do!
• Ideally written along with new code
• Test-driven development

■ Write tests first
■ Fill in the implementation until tests pass
■ Rinse & repeat
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Running Unit Tests
• Automate so you don't have to explicitly run tests
• Many testing frameworks can run tests every time you build

• Just as compiler checks syntax, unit tests check semantics
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Why Unit Test?
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Why Unit Test?
• Fewer bugs

■ More confidence that you're shipping a high quality product

• Find bugs early
■ Bugs are easier (and cheaper) to fix early in development

• Avoid regressions
■ Ensure that changing one piece of code doesn't break another

• Document your code
■ How is a method intended to be used? Check out the tests...

• Encourage good design
■ Spaghetti code is hard to test! Design with testability in mind
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Unit Testing Frameworks
• Family of similar frameworks for testing various languages

■ JUnit, NUnit, PyUnit...

• OCUnit for Objective-C
■ Ships with Mac OS X developer tools, integrates with Xcode
■ Included with iPhone SDK as of 2.2
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Basics of OCUnit
• SenTestCase is abstract test case superclass
• Automatically runs methods that begin with "test"
• Macros for asserting conditions during tests

■ STAssertNotNil(someObject, @"Some object was nil");
■ See SenTestCase.h for more

• -setUp and -tearDown methods run before and after each test
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Defining A New Test Case Class
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Defining A New Test Case Class
#import <SenTestingKit/SenTestingKit.h>

@class Foo;

@interface FooTests : SenTestCase {
Foo *foo;

}
@end
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Preparing Tests 
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Preparing Tests 
@implementation FooTests

- (void)setUp {
// Every test will have its own Foo instance
foo = [[Foo alloc] init];

}

- (void)tearDown {
[foo release];

}

...

@end
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Adding Tests
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Adding Tests
@implementation FooTests

...

- (void)testCreateFoo {
STAssertNotNil(foo, @"Couldn't create Foo");

}

- (void)testSetBar {
Bar *bar = ...;
foo.bar = bar;
STAssertEqualObjects(foo.bar, bar, @"Couldn't set foo.bar");

}

...

@end
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Testing Error Conditions
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Testing Error Conditions
@implementation FooTests

...

- (void)testOutOfBoundsAccess {
STAssertNil([foo barAtIndex:99], @"Index 99 should be nil");

}

...

@end
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Demo:
Unit Testing an iPhone App
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When Does Unit Testing Make Sense?
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When Does Unit Testing Make Sense?
• Always be conscious of the return on investment

■ Benefit of the test versus time to create and maintain?
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When Does Unit Testing Make Sense?
• Always be conscious of the return on investment

■ Benefit of the test versus time to create and maintain?

• Some types of code are notoriously difficult to test
■ Networking
■ Databases
■ Often possible to test a subset of behavior and still benefit
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Unit Testing Philosophy
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• Keep tests short, lightweight, fast

15Monday, March 15, 2010



Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior

15Monday, March 15, 2010



Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior
• Find a new bug? Write a new test before you fix it

15Monday, March 15, 2010



Unit Testing Philosophy
• Keep tests short, lightweight, fast
• Test individual methods, not end-to-end behavior
• Find a new bug? Write a new test before you fix it
• Complement (rather than replace) other types of tests

■ http://www.friday.com/bbum/2005/09/24/unit-testing/
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Fun with Objective-C
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The Objective-C Runtime
• How does OCUnit find all the methods that begin with “test”?
• Any other cool tricks?
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/usr/include/objc
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/usr/include/objc
• <objc/objc.h>

■ id, Nil, nil, BOOL, YES, NO
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/usr/include/objc
• <objc/objc.h>

■ id, Nil, nil, BOOL, YES, NO

• <objc/message.h>
■ objc_msgSend() and friends

• <objc/runtime.h>
■ Inspect and manipulate classes, protocols, methods
■ Add and replace methods at runtime
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Inspecting Methods
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Inspecting Methods
• Copy all methods for a class
Method *class_copyMethodList(Class cls,
                             unsigned int *outCount);
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Inspecting Methods
• Copy all methods for a class

• Get attributes for a method

Method *class_copyMethodList(Class cls,
                             unsigned int *outCount);

SEL method_getName(Method m);
IMP method_getImplementation(Method m);
char *method_copyReturnType(Method m);
...
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Demo:
Inspecting Methods
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Playing With Fire
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Playing With Fire
• Adding a method to a class
BOOL class_addMethod(Class cls, SEL name, IMP imp,
                     const char *types);
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Playing With Fire
• Adding a method to a class

• Replacing the implementation for a method

BOOL class_addMethod(Class cls, SEL name, IMP imp,
                     const char *types);

IMP method_setImplementation(Method method, IMP imp);
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Playing With Fire
• Adding a method to a class

• Replacing the implementation for a method

• Method swizzling

BOOL class_addMethod(Class cls, SEL name, IMP imp,
                     const char *types);

IMP method_setImplementation(Method method, IMP imp);

void method_exchangeImplementations(Method m1, Method m2);

21Monday, March 15, 2010



Method Swizzling
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Method Swizzling
• What if you want to override a method in a category while 

still making use of the original method?
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Method Swizzling
• What if you want to override a method in a category while 

still making use of the original method?
■ Can’t call super, a category isn’t a subclass

• Define a new method, swizzle it into place
Method existingMethod = ...;
Method fancyNewMethod = ...;
method_exchangeImplementations(existingMethod, fancyNewMethod);

- (void)fancyNewMethod
{

// This looks like it will cause an infinite loop...
// Once swizzled, it will actually invoke -existingMethod!
[self fancyNewMethod];

// Perform additional work here
}
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Demo:
Method Swizzling
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Why is this dangerous?
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• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?
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Why is this dangerous?
• Other code may be dependent on the original implementation

■ Perhaps code you didn’t even write?

• Can cause unexpected behavior, bizarre bugs, crashes
■ This has caused some popular apps to break on iPhone OS 3.0

• Writing “clever” code is fun until you have to debug it
• Never ship an app that swizzles methods on system classes
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Objective-C 2.0 Runtime Reference
• http://developer.apple.com/DOCUMENTATION/Cocoa/

Reference/ObjCRuntimeRef/Reference/reference.html
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class-dump
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• Inspect the classes and methods of an Objective-C binary
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class-dump
• Inspect the classes and methods of an Objective-C binary
• Fascinating to see how a complex application is architected

■ Especially one that you didn’t write!

• As usual, this can be used for evil purposes as well
■ Discover and use private methods in a framework
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“Calling unpublished APIs           
is like jaywalking...”
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“Calling unpublished APIs           
is like jaywalking across 280”
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The Problem with Using Private APIs
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The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:
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The Problem with Using Private APIs
• Framework APIs are kept private for one of a few reasons:

■ They’re not done yet (and will probably change)
■ They’re never going to be public (and may disappear)

• Not just because Apple wants to hide cool stuff from you
• If your app depends on a private API that goes away...

■ At best, your app won’t work correctly anymore
■ More often, your app will just crash
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Localization
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Your International Application
• Multiple languages and locales in a single built application
• Keep localized resources separate from everything else

■ Strings
■ Images
■ User interfaces (in NIBs)
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Where Do Localized Resources Go?
• MyApp.app/

■ MyApp
■ English.lproj/

■ Localizable.strings
■ MyView.nib

■ Japanese.lproj/
■ Localizable.strings
■ MyView.nib
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Two Steps
• Internationalization (i18n)

■ Prepare your app to be used in different languages and locales

• Localization (l10n)
■ Add localized data for specific languages and locales
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NSString to the Rescue
• Interconverts with dozens of encodings
• Saves you from having to deal with complexities of text
• Remember encoding when reading data from disk or web

- (id)initWithData:(NSData *)data
          encoding:(NSStringEncoding)encoding;
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Localized Strings
• For user-visible strings in your application code
• Map from an unlocalized key to a localized string
• Stored in .strings files

■ Key-value pairs
■ Use UTF-16 for encoding
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Strings File Example
• en.lproj/Greetings.strings

"Hello" = "Hello";
"Welcome to %@" = "Welcome to %@";
"Blah %@ blah %@!" = "Blah %@ blah %@";

• fr.lproj/Greetings.strings

"Hello" = "Bonjour";
"Welcome to %@" = "Bienvenue a %@";
"Blah %@ blah %@" = "Blah %2$@ %1$@ blah";
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Accessing Localized Strings
// By default, uses Localizable.strings
NSLocalizedString(@"Hello", @"Greeting for welcome screen");

// Specify a table, uses Greetings.strings
NSLocalizedStringFromTable(@"Hello", @"Greetings",
                           @"Greeting for welcome screen");
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genstrings
• Tool to scan your code and produce a .strings file
• Inserts comments found in code as clues to localizer
• Run the tool over your *.m files
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Other Resources
• NSBundle resource methods automatically use the best 

available localization
• Nib loading does the same
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Internationalizing NIBs
• Plan for different string lengths in different languages

■ Good idea to start with German...
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Localizing a Resource
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Localizing a Resource
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Localizing a Resource
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NSLocale
• Measurements
• Currency
• Number formatting
• Calendar and date format
• Country information
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Opening the Mailbag...
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“How do I launch my app in 
landscape orientation?”
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Launching Your App in Landscape
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Launching Your App in Landscape
• Two steps

■ Specify initial interface orientation in your Info.plist

■ Support the specified orientation in your view controller
■ Override -shouldAutorotateToInterfaceOrientation:
■ Return YES to indicate interface orientations that you support

• Works on iPhone OS 2.1 or later
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Demo:
Launching in Landscape

48Monday, March 15, 2010



“How can I customize UIKit   
views and controls?”
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Customizing UIKit Views
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Customizing UIKit Views
• Some classes are designed to be totally customizable

■ UIButton
■ UITableView
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Customizing UIKit Views
• Some classes are designed to be totally customizable

■ UIButton
■ UITableView

• Many classes have limited customizability
■ UINavigationBar
■ UISlider

• Other classes are not customizable
■ UISwitch
■ UITabBar
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What’s Safe to Customize?
• Look for methods for customizing appearance

■ UIButton: background image
■ UINavigationBar: style, tint, translucency
■ UITableView: delegate methods for appearance

• You can always create your own UIView or UIControl subclass
■ Handle touches
■ Custom drawing
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Respecting the View Hierarchy
• Internal view hierarchies are always subject to change

■ Navigation bar
■ Navigation and tab bar controllers
■ Image picker controller

• Making assumptions is unsafe and will likely break your app
■ Don’t manipulate undocumented subviews of system views
■ Don’t add your own custom subviews

• You want your application to be future-ready
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“Should I create my views using 
Interface Builder or in code?”
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When to Use Interface Builder
• Almost always recommended
• Especially useful when creating a view with many subviews
• Not as useful when dealing with just a single view

■ Table views

• Remember: one view controller subclass, one NIB
■ Make connections to view controller via File’s Owner
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Nibs and Memory Management
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• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading
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Nibs and Memory Management
• Top-level nib objects are autoreleased

■ Retain them if they should stick around after loading

• IBOutlets are retained by default
■ Release them in -dealloc even if you don’t have a setter!
■ Implement or synthesize a non-retained setter if desired
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“Where can I get cool icons for 
my toolbar or tab bar items?”
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Toolbar and Tab Bar Images
• Images should be about 30 x 30 pixels
• PNG with alpha channel
• Used as a mask by UIKit for drawing with system colors

57Monday, March 15, 2010



• Glyphish, by Joseph Wain: http://www.glyphish.com
• Creative Commons License

■ *Free to use, share, or remix with attribution

Some Great Free* Icons
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“Can I build Mac apps now that    
I know iPhone development?”
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Building iPhone & Mac OS X Apps
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Building iPhone & Mac OS X Apps
• At this point, you’re familiar with

■ Objective-C language
■ Cocoa Touch frameworks
■ Object-oriented design patterns
■ Interface Builder and NIBs
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Building iPhone & Mac OS X Apps
• At this point, you’re familiar with

■ Objective-C language
■ Cocoa Touch frameworks
■ Object-oriented design patterns
■ Interface Builder and NIBs

• Developing for the Mac desktop is within your reach!
■ First few lectures of CS193P and CS193E are identical

• Big difference is Cocoa vs. Cocoa Touch
■ Many UIKit and AppKit classes are similar
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