
CS193P - Lecture 13
iPhone Application Development

Address Book - Putting People in Your App
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Announcements
• Paparazzi 3 due tomorrow at 11:59PM
• Paparazzi 4 (last assignment!) due next Wednesday
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Final Project Proposals
• Due tomorrow night!

■ Handout on website has all the info

• If you still need an idea for a project, let us know
• We will be responding with feedback & a thumbs-up
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• Address Book APIs
• CoreFoundation
• Merging from an external source of people
• Using contacts in your application

Today’s Topics
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Putting Contacts in Your App
The Hello World of Address Book
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The Hello World of Address Book
• Create a person and set some properties
• Create ABPersonViewController
• Push the view controller onto the navigation stack
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CoreFoundation
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CoreFoundation vs. Foundation
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CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
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CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease
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CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease

• AddressBook framework is also C-based
■ Uses CoreFoundation data types and semantics
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CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease

• AddressBook framework is also C-based
■ Uses CoreFoundation data types and semantics

• Addition to memory management naming conventions
■ Functions with Create in their title return a retained object
■ For example, ABAddressBookCreate( );
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Toll-Free Bridging
• Supported for many types of objects

■ Strings, arrays, dictionaries, dates, numbers, data streams, more

• Use an NSString* where a CFStringRef is expected & vice versa
• Very convenient for mixing & matching C with Objective-C
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Toll-Free Bridging
• Supported for many types of objects

■ Strings, arrays, dictionaries, dates, numbers, data streams, more

• Use an NSString* where a CFStringRef is expected & vice versa
• Very convenient for mixing & matching C with Objective-C

CFArrayRef array = ABAddressBookCopyPeopleWithName(...);

NSLog(@“%d”, [(NSArray *)array count]);

NSMutableArray *mutableArray = [(NSArray *)array mutableCopy];
[mutableArray release];

if (array) {
CFRelease(array);

}
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CoreFoundation and NULL
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CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects
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CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)
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CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}
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CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

■ Toll-free bridging can make this easier

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}
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CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

■ Toll-free bridging can make this easier

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}

NSString *string = (NSString *)CreateSomeCFString...;
NSLog(@“%@”, [string lowercaseString]);
[string autorelease]; // Even use autorelease!
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Beyond Hello World
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Social Networking Website
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Social Networking Website
• People on the web
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Social Networking Website
• People on the web
• People on the iPhone
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Social Networking Website
• People on the web
• People on the iPhone
• Reconciling them
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What Do We Need to Do?
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What Do We Need to Do?
• Download
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What Do We Need to Do?
• Download

• Search
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What Do We Need to Do?
• Download

• Search

• Update
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What Do We Need to Do?
• Download

• Search

• Update

• Display
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Search
• Get the address book
• Search the people

Step One
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Search
• Get the address book
• Search the people

ABAddressBookRef ab = ABAddressBookCreate();
CFArrayRef people = ABAddressBookCopyPeopleWithName(ab, name);

Step One
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Address Book
• ABAddressBookRef
• Gives you access to the people
• Central point for all things address book
• Multiple instances, a single database

ABAddressBookRef ab = ABAddressBookCreate();
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Person
• ABRecordRef
• A collection of properties

■ First and last name
■ Image
■ Phone numbers, emails, etc…
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• Properties can have different types
■ String
■ Date
■ Dictionary, Data…

• Some properties may have multiple values
■ Telephone: home, work, mobile, fax…

• Person properties in ABPerson.h

Properties
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• First Name, last name, birthday, etc…

• CoreFoundation types

Single Value Properties
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• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

Single Value Properties

18Tuesday, February 16, 2010



• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

Single Value Properties

CFStringRef first = 
            ABRecordCopyValue(person, kABPersonFirstNameProperty);
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• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

• Set values with ABRecordSetValue(…)

Single Value Properties

CFStringRef first = 
            ABRecordCopyValue(person, kABPersonFirstNameProperty);
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• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

• Set values with ABRecordSetValue(…)

Single Value Properties

CFStringRef first = 
            ABRecordCopyValue(person, kABPersonFirstNameProperty);

CFDateRef date = CFDateCreate(…)
ABRecordSetValue(person, kABPersonBirthdayProperty, date, &error);
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• Phones, emails, URLs, etc…

• Access just like single value properties

• ABMultiValueRef

• Container for values and labels

Multi Value Properties

label: kABHomeLabel
value:  (408) 555 1234

label: kABWorkLabel
value:  (408) 555 2345

ABMultiValueRef
property:
kABPersonPhoneProperty

label: kABHomeLabel
value:  (415) 555 2375
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ABMultiValueRef
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• Count

ABMultiValueRef
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• Count

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);
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• Count

• Value

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);
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• Count

• Value

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);
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• Count

• Value

• Label

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);
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• Count

• Value

• Label

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);
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• Count

• Value

• Label

• Identifier

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);
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• Count

• Value

• Label

• Identifier

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);

CFIndex identifier = ABMultiValueGetIdentifierAtIndex(mv, index);
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Update
• Mutate the multi value
• Add the value
• Set the value on the person
• Save the Address Book

Step Two
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Update
• Mutate the multi value
• Add the value
• Set the value on the person
• Save the Address Book

ABMultiValueRef urls = ABRecordCopyValue(person, kABPersonURLProperty);

ABMutableMultiValueRef urlCopy = ABMultiValueCreateMutableCopy(urls);
ABMultiValueAddValueAndLabel(urlCopy, "the url", "social", NULL);
ABRecordSetValue(person, urlCopy, kABPersonURLProperty);

ABAddressBookSave(ab, &err);

Step Two
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Display
• Sort
• Get the name
• Display

Step Three
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Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName
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Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName

CFMutableArrayRef people = // obtain an array of people
CFRange fullRange = CFRangeMake(0, CFArrayGetCount(people));

ABPersonSortOrdering sortOrdering = ABPersonGetSortOrdering();

CFArraySortValues(people, fullRange, ABPersonComparePeopleByName, 
(void*)sortOrdering);
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Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName

CFMutableArrayRef people = // obtain an array of people
CFRange fullRange = CFRangeMake(0, CFArrayGetCount(people));

ABPersonSortOrdering sortOrdering = ABPersonGetSortOrdering();

CFArraySortValues(people, fullRange, ABPersonComparePeopleByName, 
(void*)sortOrdering);

// Objective-C alternative
[people sortUsingFunction:ABPersonComparePeopleByName context:
(void*)sortOrdering];
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Getting the Name
• ABRecordCopyCompositeName
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Getting the Name
• ABRecordCopyCompositeName

ABRecordRef person = // get a person
CFStringRef name = ABRecordCopyCompositeName(person);

// do something clever with that person’s name
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Getting the Name
• ABRecordCopyCompositeName

ABRecordRef person = // get a person
CFStringRef name = ABRecordCopyCompositeName(person);

// do something clever with that person’s name

ABRecordRef person = // get a person
NSString *name = (NSString*)ABRecordCopyCompositeName(person);

// do something clever with that person’s name
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Demo
Bringing the people to the phone
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What We Just Saw
• Searching for people by name
• Using multi values
• Sorting and Displaying people
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Showing Detailed Information
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Person View Controller
• ABPersonViewController

■ displayedPerson
■ displayedProperties
■ allowsEditing
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Adding Contacts to Address Book
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Unknown Person View Controller
• ABUnknownPersonViewController

■ displayedPerson
■ allowsAddingToAddressBook
■ delegate
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Unknown Person View Controller
• ABUnknownPersonViewController

■ displayedPerson
■ allowsAddingToAddressBook
■ delegate

- (void)unknownPersonViewController:(ABUnknownPersonViewController *)
unknownCardViewController didResolveToPerson:(ABRecordRef)person {

  // do something

}
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Demo
Showing the people
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What Did We Just See?
• Display contacts with ABPersonViewController
• Add to Address Book with ABUnknownPersonViewController
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What If It Takes Too Long?
• Doing things in the background

■ NSThread
■ pthread
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Threading Model
• Each thread needs its own ABAddressBookRef
• What you can pass between threads:

■ Values
■ ABRecordID
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Using the People
Adding people to an existing application
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Pick an email address and send an email
• Create an email button
• Pick a person
• Build an email URL and open it
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Picking People
• ABPeoplePickerNavigationController
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Picking People
• ABPeoplePickerNavigationController
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Picking People
• ABPeoplePickerNavigationController
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ABPeoplePickerNavigationController
• Present the Navigation Controller
• ABPeoplePickerNavigationControllerDelegate

■ Cancellation
■ Selection of a person
■ Selection of a value
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Demo
Because my friends like to receive emails
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What We Just Saw
• Present ABPeoplePickerNavigationController modally
• Delegate callbacks
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People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book
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People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book

ABRecordID personID = ABRecordGetRecordID(person);
NSNumber *personIDAsNumber = [NSNumber numberWithInt:personID];

// serialize the NSNumber
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People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book

ABRecordID personID = ABRecordGetRecordID(person);
NSNumber *personIDAsNumber = [NSNumber numberWithInt:personID];

// serialize the NSNumber

NSNumber *personIDAsNumber = // Deserialize the NSNumber
ABRecordID personID = [personIDAsNumber intValue];

ABRecordRef person = ABAddressBookGetPersonWithRecordID(ab, personID);
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What if the Database Changed?
• Check before displaying
• Store extra information
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What if the Database Changed?
• Check before displaying
• Store extra information

ABRecordID recordID = // get the record

ABRecordRef person = ABAddressBookGetPersonWithRecordID(ab, personID);

if (person != NULL) {
    // use the person
} else {
    // fallback to other data
}
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Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface
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Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface

// Recipe Detail View Controller
ABAddressBookRegisterExternalChangeCallback(ab, abChanged, self);

43Tuesday, February 16, 2010



Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface

// Recipe Detail View Controller
ABAddressBookRegisterExternalChangeCallback(ab, abChanged, self);

void abChanged(ABAddressBookRef ab, CFDictionaryRef info, void 
*context) {
    ABAddressBookRevert(ab);
    [(RecipeDetailViewController*)context reloadData];
}
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More on Change Callbacks
• Revert or ignore the changes
• Threading and change callbacks
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Summary
• Low level C API for dealing with people
• View controllers for presenting the people
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Questions?
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