
CS193P - Lecture 13
iPhone Application Development

Address Book - Putting People in Your App

1Tuesday, February 16, 2010

Announcements
• Paparazzi 3 due tomorrow at 11:59PM
• Paparazzi 4 (last assignment!) due next Wednesday

2Tuesday, February 16, 2010

Final Project Proposals
• Due tomorrow night!

■ Handout on website has all the info

• If you still need an idea for a project, let us know
• We will be responding with feedback & a thumbs-up

3Tuesday, February 16, 2010

• Address Book APIs
• CoreFoundation
• Merging from an external source of people
• Using contacts in your application

Today’s Topics

4Tuesday, February 16, 2010

Putting Contacts in Your App
The Hello World of Address Book

5Tuesday, February 16, 2010

The Hello World of Address Book
• Create a person and set some properties
• Create ABPersonViewController
• Push the view controller onto the navigation stack

6Tuesday, February 16, 2010

CoreFoundation

7Tuesday, February 16, 2010

CoreFoundation vs. Foundation

8Tuesday, February 16, 2010

CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C

8Tuesday, February 16, 2010

CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease

8Tuesday, February 16, 2010

CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease

• AddressBook framework is also C-based
■ Uses CoreFoundation data types and semantics

8Tuesday, February 16, 2010

CoreFoundation vs. Foundation
• CoreFoundation is a framework written in C
• Many parallels to Foundation

■ CFDictionaryRef, CFStringRef
■ CFRetain, CFRelease

• AddressBook framework is also C-based
■ Uses CoreFoundation data types and semantics

• Addition to memory management naming conventions
■ Functions with Create in their title return a retained object
■ For example, ABAddressBookCreate();

8Tuesday, February 16, 2010

Toll-Free Bridging
• Supported for many types of objects

■ Strings, arrays, dictionaries, dates, numbers, data streams, more

• Use an NSString* where a CFStringRef is expected & vice versa
• Very convenient for mixing & matching C with Objective-C

9Tuesday, February 16, 2010

Toll-Free Bridging
• Supported for many types of objects

■ Strings, arrays, dictionaries, dates, numbers, data streams, more

• Use an NSString* where a CFStringRef is expected & vice versa
• Very convenient for mixing & matching C with Objective-C

CFArrayRef array = ABAddressBookCopyPeopleWithName(...);

NSLog(@“%d”, [(NSArray *)array count]);

NSMutableArray *mutableArray = [(NSArray *)array mutableCopy];
[mutableArray release];

if (array) {
CFRelease(array);

}

9Tuesday, February 16, 2010

CoreFoundation and NULL

10Tuesday, February 16, 2010

CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

10Tuesday, February 16, 2010

CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

10Tuesday, February 16, 2010

CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}

10Tuesday, February 16, 2010

CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

■ Toll-free bridging can make this easier

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}

10Tuesday, February 16, 2010

CoreFoundation and NULL
• Unlike Objective-C, must NULL-check CF type objects

■ (Since nil is typed id, we use NULL for CF)

■ Toll-free bridging can make this easier

CFStringRef string = CreateSomeCFString...;
if (string != NULL) {

DoSomethingWith(string);
CFRelease(string);

}

NSString *string = (NSString *)CreateSomeCFString...;
NSLog(@“%@”, [string lowercaseString]);
[string autorelease]; // Even use autorelease!

10Tuesday, February 16, 2010

Beyond Hello World

11Tuesday, February 16, 2010

Social Networking Website

12Tuesday, February 16, 2010

Social Networking Website
• People on the web

12Tuesday, February 16, 2010

Social Networking Website
• People on the web
• People on the iPhone

12Tuesday, February 16, 2010

Social Networking Website
• People on the web
• People on the iPhone
• Reconciling them

12Tuesday, February 16, 2010

What Do We Need to Do?

13Tuesday, February 16, 2010

What Do We Need to Do?
• Download

13Tuesday, February 16, 2010

What Do We Need to Do?
• Download

• Search

13Tuesday, February 16, 2010

What Do We Need to Do?
• Download

• Search

• Update

13Tuesday, February 16, 2010

What Do We Need to Do?
• Download

• Search

• Update

• Display

13Tuesday, February 16, 2010

Search
• Get the address book
• Search the people

Step One

14Tuesday, February 16, 2010

Search
• Get the address book
• Search the people

ABAddressBookRef ab = ABAddressBookCreate();
CFArrayRef people = ABAddressBookCopyPeopleWithName(ab, name);

Step One

14Tuesday, February 16, 2010

Address Book
• ABAddressBookRef
• Gives you access to the people
• Central point for all things address book
• Multiple instances, a single database

ABAddressBookRef ab = ABAddressBookCreate();

15Tuesday, February 16, 2010

Person
• ABRecordRef
• A collection of properties

■ First and last name
■ Image
■ Phone numbers, emails, etc…

16Tuesday, February 16, 2010

• Properties can have different types
■ String
■ Date
■ Dictionary, Data…

• Some properties may have multiple values
■ Telephone: home, work, mobile, fax…

• Person properties in ABPerson.h

Properties

17Tuesday, February 16, 2010

• First Name, last name, birthday, etc…

• CoreFoundation types

Single Value Properties

18Tuesday, February 16, 2010

• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

Single Value Properties

18Tuesday, February 16, 2010

• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

Single Value Properties

CFStringRef first =
 ABRecordCopyValue(person, kABPersonFirstNameProperty);

18Tuesday, February 16, 2010

• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

• Set values with ABRecordSetValue(…)

Single Value Properties

CFStringRef first =
 ABRecordCopyValue(person, kABPersonFirstNameProperty);

18Tuesday, February 16, 2010

• First Name, last name, birthday, etc…

• CoreFoundation types

• Retrieve values with ABRecordCopyValue(…)

• Set values with ABRecordSetValue(…)

Single Value Properties

CFStringRef first =
 ABRecordCopyValue(person, kABPersonFirstNameProperty);

CFDateRef date = CFDateCreate(…)
ABRecordSetValue(person, kABPersonBirthdayProperty, date, &error);

18Tuesday, February 16, 2010

• Phones, emails, URLs, etc…

• Access just like single value properties

• ABMultiValueRef

• Container for values and labels

Multi Value Properties

label: kABHomeLabel
value: (408) 555 1234

label: kABWorkLabel
value: (408) 555 2345

ABMultiValueRef
property:
kABPersonPhoneProperty

label: kABHomeLabel
value: (415) 555 2375

19Tuesday, February 16, 2010

ABMultiValueRef

20Tuesday, February 16, 2010

• Count

ABMultiValueRef

20Tuesday, February 16, 2010

• Count

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

20Tuesday, February 16, 2010

• Count

• Value

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

20Tuesday, February 16, 2010

• Count

• Value

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

20Tuesday, February 16, 2010

• Count

• Value

• Label

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

20Tuesday, February 16, 2010

• Count

• Value

• Label

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);

20Tuesday, February 16, 2010

• Count

• Value

• Label

• Identifier

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);

20Tuesday, February 16, 2010

• Count

• Value

• Label

• Identifier

ABMultiValueRef

CFIndex count = ABMultiValueGetCount(multiValue);

CFTypeRef value = ABMultiValueCopyValueAtIndex(mv, index);

CFStringRef label = ABMultiValueCopyLabelAtIndex(mv, index);

CFIndex identifier = ABMultiValueGetIdentifierAtIndex(mv, index);

20Tuesday, February 16, 2010

Update
• Mutate the multi value
• Add the value
• Set the value on the person
• Save the Address Book

Step Two

21Tuesday, February 16, 2010

Update
• Mutate the multi value
• Add the value
• Set the value on the person
• Save the Address Book

ABMultiValueRef urls = ABRecordCopyValue(person, kABPersonURLProperty);

ABMutableMultiValueRef urlCopy = ABMultiValueCreateMutableCopy(urls);
ABMultiValueAddValueAndLabel(urlCopy, "the url", "social", NULL);
ABRecordSetValue(person, urlCopy, kABPersonURLProperty);

ABAddressBookSave(ab, &err);

Step Two

21Tuesday, February 16, 2010

Display
• Sort
• Get the name
• Display

Step Three

22Tuesday, February 16, 2010

Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName

23Tuesday, February 16, 2010

Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName

CFMutableArrayRef people = // obtain an array of people
CFRange fullRange = CFRangeMake(0, CFArrayGetCount(people));

ABPersonSortOrdering sortOrdering = ABPersonGetSortOrdering();

CFArraySortValues(people, fullRange, ABPersonComparePeopleByName,
(void*)sortOrdering);

23Tuesday, February 16, 2010

Sorting
• We’ll do it for you
• ABPersonGetSortOrdering
• ABPersonComparePeopleByName

CFMutableArrayRef people = // obtain an array of people
CFRange fullRange = CFRangeMake(0, CFArrayGetCount(people));

ABPersonSortOrdering sortOrdering = ABPersonGetSortOrdering();

CFArraySortValues(people, fullRange, ABPersonComparePeopleByName,
(void*)sortOrdering);

// Objective-C alternative
[people sortUsingFunction:ABPersonComparePeopleByName context:
(void*)sortOrdering];

23Tuesday, February 16, 2010

Getting the Name
• ABRecordCopyCompositeName

24Tuesday, February 16, 2010

Getting the Name
• ABRecordCopyCompositeName

ABRecordRef person = // get a person
CFStringRef name = ABRecordCopyCompositeName(person);

// do something clever with that person’s name

24Tuesday, February 16, 2010

Getting the Name
• ABRecordCopyCompositeName

ABRecordRef person = // get a person
CFStringRef name = ABRecordCopyCompositeName(person);

// do something clever with that person’s name

ABRecordRef person = // get a person
NSString *name = (NSString*)ABRecordCopyCompositeName(person);

// do something clever with that person’s name

24Tuesday, February 16, 2010

Demo
Bringing the people to the phone

25Tuesday, February 16, 2010

What We Just Saw
• Searching for people by name
• Using multi values
• Sorting and Displaying people

26Tuesday, February 16, 2010

Showing Detailed Information

27Tuesday, February 16, 2010

Person View Controller
• ABPersonViewController

■ displayedPerson
■ displayedProperties
■ allowsEditing

28Tuesday, February 16, 2010

Adding Contacts to Address Book

29Tuesday, February 16, 2010

Unknown Person View Controller
• ABUnknownPersonViewController

■ displayedPerson
■ allowsAddingToAddressBook
■ delegate

30Tuesday, February 16, 2010

Unknown Person View Controller
• ABUnknownPersonViewController

■ displayedPerson
■ allowsAddingToAddressBook
■ delegate

- (void)unknownPersonViewController:(ABUnknownPersonViewController *)
unknownCardViewController didResolveToPerson:(ABRecordRef)person {

 // do something

}

30Tuesday, February 16, 2010

Demo
Showing the people

31Tuesday, February 16, 2010

What Did We Just See?
• Display contacts with ABPersonViewController
• Add to Address Book with ABUnknownPersonViewController

32Tuesday, February 16, 2010

What If It Takes Too Long?
• Doing things in the background

■ NSThread
■ pthread

33Tuesday, February 16, 2010

Threading Model
• Each thread needs its own ABAddressBookRef
• What you can pass between threads:

■ Values
■ ABRecordID

34Tuesday, February 16, 2010

Using the People
Adding people to an existing application

35Tuesday, February 16, 2010

Pick an email address and send an email
• Create an email button
• Pick a person
• Build an email URL and open it

36Tuesday, February 16, 2010

Picking People
• ABPeoplePickerNavigationController

37Tuesday, February 16, 2010

Picking People
• ABPeoplePickerNavigationController

37Tuesday, February 16, 2010

Picking People
• ABPeoplePickerNavigationController

37Tuesday, February 16, 2010

ABPeoplePickerNavigationController
• Present the Navigation Controller
• ABPeoplePickerNavigationControllerDelegate

■ Cancellation
■ Selection of a person
■ Selection of a value

38Tuesday, February 16, 2010

Demo
Because my friends like to receive emails

39Tuesday, February 16, 2010

What We Just Saw
• Present ABPeoplePickerNavigationController modally
• Delegate callbacks

40Tuesday, February 16, 2010

People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book

41Tuesday, February 16, 2010

People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book

ABRecordID personID = ABRecordGetRecordID(person);
NSNumber *personIDAsNumber = [NSNumber numberWithInt:personID];

// serialize the NSNumber

41Tuesday, February 16, 2010

People Storage
• Get the record identifier
• Serialize and deserialize it
• Look it up in Address Book

ABRecordID personID = ABRecordGetRecordID(person);
NSNumber *personIDAsNumber = [NSNumber numberWithInt:personID];

// serialize the NSNumber

NSNumber *personIDAsNumber = // Deserialize the NSNumber
ABRecordID personID = [personIDAsNumber intValue];

ABRecordRef person = ABAddressBookGetPersonWithRecordID(ab, personID);

41Tuesday, February 16, 2010

What if the Database Changed?
• Check before displaying
• Store extra information

42Tuesday, February 16, 2010

What if the Database Changed?
• Check before displaying
• Store extra information

ABRecordID recordID = // get the record

ABRecordRef person = ABAddressBookGetPersonWithRecordID(ab, personID);

if (person != NULL) {
 // use the person
} else {
 // fallback to other data
}

42Tuesday, February 16, 2010

Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface

43Tuesday, February 16, 2010

Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface

// Recipe Detail View Controller
ABAddressBookRegisterExternalChangeCallback(ab, abChanged, self);

43Tuesday, February 16, 2010

Notifications
• Register callback

■ ABAddressBookRegisterExternalChangeCallback
■ C callback

• And then what?
■ Revert to get the changes
■ Update the user interface

// Recipe Detail View Controller
ABAddressBookRegisterExternalChangeCallback(ab, abChanged, self);

void abChanged(ABAddressBookRef ab, CFDictionaryRef info, void
*context) {
 ABAddressBookRevert(ab);
 [(RecipeDetailViewController*)context reloadData];
}

43Tuesday, February 16, 2010

More on Change Callbacks
• Revert or ignore the changes
• Threading and change callbacks

44Tuesday, February 16, 2010

Summary
• Low level C API for dealing with people
• View controllers for presenting the people

45Tuesday, February 16, 2010

Questions?

46Tuesday, February 16, 2010

