CS193P - Lecture 3

iPhone Application Development

Custom Classes
Object Lifecycle
Autorelease
Properties

Tuesday, January 12, 2010




Announcements

* Assignments 1A and 1B due Wednesday 1/13 at 11:59 PM

- Enrolled Stanford students can email ¢s193p@cs.stanford.edu
with any questions

- Submit early! Instructions on the website...
* Delete the “build” directory manually, Xcode won’t do it
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Announcements

* Assignments 2A and 2B due Wednesday 1/20 at 11:59 PM
= 2A: Continuation of Foundation tool

- Add custom class
= Basic memory management
- 2B: Beginning of first iPhone application
- Topics to be covered on Thursday, 1/14
- Assignment contains extensive walkthrough
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Enrolled students & iTunes U

* Lectures have begun showing up on iTunes U
* Lead time is longer than last year

* Come to class!!
- Lectures may not post in time for assignments
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Office Hours

» Paul’s office hours: Thursday 2-4, Gates B26B
* David’s office hours: Mondays 4-6pm: Gates 360
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Today'’s Topics

* Questions from Assignment 1A or 1B?
* Creating Custom Classes

* Object Lifecycle

* Autorelease

* Objective-C Properties
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Custom Classes
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Design Phase
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Design Phase

* Create a class
= Person
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Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)
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Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)

* What properties should it have?
- Name, age, whether they can vote
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Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)

* What properties should it have?
- Name, age, whether they can vote

« What actions can it perform?
- Cast a ballot
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Defining a class
A public header and a private implementation

Header File Implementation File
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Defining a class
A public header and a private implementation

Header File Implementation File
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Class interface declared in header file
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Class interface declared in header file

@interface Person
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Class interface declared in header file

@interface Person : NSObject
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Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
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Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
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Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;
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Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1nstance variables
NSString *name;
int age;

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end
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Defining a class
A public header and a private implementation

Header File Implementation File
. Y
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Implementing custom class

* Implement setter/getter methods
* Implement action methods
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Class Implementation
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Class Implementation

#import "Person.h"
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Class Implementation

#import "Person.h"

@implementation Person
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Class Implementation

#import "Person.h"

@implementation Person

(int)age {
return age;

- (void)setAge:(int)value {
age = value;

}
//... and other methods

@end

Tuesday, January 12, 2010




Calling your own methods
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Calling your own methods

#import "Person.h"
@implementation Person
- (BOOL)canLegallyVote {

}

- (void)castBallot {
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Calling your own methods

#import "Person.h"
@implementation Person
- (BOOL)canLegallyVote {

return ([self age] >= 18);
}

- (void)castBallot {
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Calling your own methods

#import "Person.h"
@implementation Person

- (BOOL)canLegallyVote {

return ([self age] >= 18);
}

- (void)castBallot {

1f ([self canLegallyVote]) {
// do voting stuff
} else {
NSLog (@“I’m not allowed to vote!”);
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Superclass methods

* As we just saw, objects have an implicit variable named “self”
= Like “this” in Java and C++

» Can also invoke superclass methods using “super”
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Superclass methods

* As we just saw, objects have an implicit variable named “self”
« Like “this” in Java and C++

» Can also invoke superclass methods using “super”

- (void)doSomething {
// Call superclass implementation first
[super doSomething];

// Then do our custom behavior

int foo = bar;
/] ...

Tuesday, January 12, 2010




Object Lifecycle
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Object Lifecycle

* Creating objects
* Memory management
* Destroying objects
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Object Creation
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Object Creation

* Two step process
- allocate memory to store the object

- initialize object state
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Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

+ alloc
- Class method that knows how much memory is needed
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Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

+ alloc
- Class method that knows how much memory is needed

- 1nit
- Instance method to set initial values, perform other setup
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Create = Allocate + Initialize
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Create = Allocate + Initialize

Person *person = nil;
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Create = Allocate + Initialize

Person *person = nil;

person = [[Person alloc] init];
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Implementing your own -init method

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010



Implementing your own -init method

#import "Person.h"
@implementation Person

- (1d)init {
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Implementing your own -init method

#import "Person.h"
@implementation Person

- (id)init {
// allow superclass to initialize its state first
1f (self = [super init]) {

}

return self;

}
@end
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Implementing your own -init method

#import "Person.h"
@implementation Person

- (id)init {
// allow superclass to initialize its state first
1f (self = [super init]) {
age = 0;
name = @“Bob”;

// do other initialization...

}

return self;

}
@end
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Multiple init methods

» Classes may define multiple init methods
- (1d)init;
- (1d)initWithName:(NSString *)name;
- (1d)initWithName:(NSString *)name age:(int)age;
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Multiple init methods

» Classes may define multiple init methods
- (1d)init;
- (1d)initWithName:(NSString *)name;
- (1d)initWithName:(NSString *)name age:(int)age;

» Less specific ones typically call more specific with default values

- (id)init {
return [self initWithName:@“No Name”];

}

- (1d)initWithName:(NSString *)name {
return [self initWithName:name age:0];

}
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Finishing Up With an Object

Person *person = nil;

person = [[Person alloc] init];

Tuesday, January 12, 2010



Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];

[person doSomethingElse];
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Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];

[person doSomethingElse];

// What do we do with person when we’re done?
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Memory Management

Allocation

Destruction
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Memory Management

Allocation

malloc

Destruction

free
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Memory Management

C
Objective-C

Allocation
malloc

alloc

Destruction
free

dealloc
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Memory Management

Allocation Destruction

C malloc free

Objective-C alloc dealloc

» Calls must be balanced
- Otherwise your program may leak or crash
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Memory Management

Allocation Destruction

C malloc free

Objective-C alloc dealloc

» Calls must be balanced
- Otherwise your program may leak or crash

* However, you'll never call -dealloc directly
- One exception, we'll see in a bit...
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Reference Counting
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Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
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Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
* +alloc and -copy create objects with retain count == 1
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Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count
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Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count

+ -release decrements retain count
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Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count
 -release decrements retain count

* When retain count reaches 0, object is destroyed
» —~deal loc method invoked automatically

- One-way street, once you're in -dealloc there’s no turning back
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Balanced Calls

Person *person = nil;

person = [[Person alloc] init];
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Balanced Calls

Person *person = nil;
person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];
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Balanced Calls

Person *person = nil;
person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

// When we’re done with person, release it
[person release]; // person will be destroyed here
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Reference counting in action
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Reference counting in action

Person *person = [[Person alloc] init];
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

Tuesday, January 12, 2010



Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];

Retain count decreases to 1 with -release
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];
Retain count decreases to 1 with -release

[person release];
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Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];
Retain count decreases to 1 with -release
[person release];

Retain count decreases to 0, -dealloc automatically called
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Messaging deallocated objects
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Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated
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Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

[person doSomething]; // Crash!
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Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated
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Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

person = nil;
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Messaging deallocated objects

Person *person = [[Person alloc] init];

/...
[person release]; // Object 1s deallocated

person = nil;

[person doSomething]; // No effect
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Implementing a -dealloc method

#import "Person.h"

@implementation Person
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Implementing a -dealloc method

#import "Person.h"
@implementation Person

- (void)dealloc {
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Implementing a -dealloc method

#import "Person.h"
@implementation Person

- (void)dealloc {
// Do any cleanup that’s necessary
// ...
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Implementing a -dealloc method

#import "Person.h"
@implementation Person
- (void)dealloc {
// Do any cleanup that’s necessary

/.

// when we’re done, call super to clean us up
[super dealloc];
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Object Lifecycle Recap

* Objects begin with a retain count of 1
* Increase and decrease with -retain and -release
» When retain count reaches 0, object deallocated automatically

* You never call dealloc explicitly in your code
- Exception is calling -[super dealloc]

- You only deal with alloc, copy, retain, release
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Object Ownership

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name; // Person class “owns” the name
int age;

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end
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Object Ownership

#import "Person.h"

@implementation Person
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Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {
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Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

1f (name !'= newName) {
[name release];
name = [nhewName retain];
// name’s retain count has been bumped up by 1
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Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {
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Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

1f (name !'= newName) {
[name release];
name = [newName copy];
// name has retain count of 1, we own it
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Releasing Instance Variables

#import "Person.h"

@implementation Person
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Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {
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Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {

// Do any cleanup that’s necessary
[name release];
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Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {

// Do any cleanup that’s necessary
[name release];

// when we’re done, call super to clean us up
[super dealloc];
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Autorelease
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

firstName, lastName];

return result;
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];

return result;

Wrong: result is leaked!
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result release];

return result;
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result release];

return result;

Wrong: result is released too early!
Method returns bogus value
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

firstName, lastName];

return result;
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result autorelease];

return result;
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Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result autorelease];

return result;

Just right: result is released, but not right away
Caller gets valid object and could retain if needed
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Autoreleasing Objects

* Calling -autorelease flags an object to be sent release at some
point in the future

» Let’s you fulfill your retain/release obligations while allowing an
object some additional time to live

* Makes it much more convenient to manage memory
* Very useful in methods which return a newly created object
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Method Names & Autorelease
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Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release
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Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];
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Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects
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Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

NSMutableString *string = [NSMutableString string]l;
// The method name doesn’t indicate that we need to release it
// So don’t- we’re cool!
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Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

NSMutableString *string = [NSMutableString string]l;
// The method name doesn’t indicate that we need to release it
// So don’t- we’re cool!

* This is a convention- follow it in methods you define!
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How does -autorelease work?
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How does -autorelease work?

* Object is added to current autorelease pool
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How does -autorelease work?

* Object is added to current autorelease pool

* Autorelease pools track objects scheduled to be released
- When the pool itself is released, it sends -release to all its objects
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How does -autorelease work?

* Object is added to current autorelease pool

* Autorelease pools track objects scheduled to be released
- When the pool itself is released, it sends -release to all its objects

» UIKit automatically wraps a pool around every event dispatch
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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Autorelease Pools (in pictures)
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‘//,[object release];
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[object release];
Pool released

Pool created
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Autorelease Pools (in pictures)
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Pool
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Hanging Onto an Autoreleased Object

* Many methods return autoreleased objects
- Remember the naming conventions...

- They’re hanging out in the pool and will get released later

* If you need to hold onto those objects you need to retain them
- Bumps up the retain count before the release happens
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Hanging Onto an Autoreleased Object

* Many methods return autoreleased objects
- Remember the naming conventions...

- They’re hanging out in the pool and will get released later

* If you need to hold onto those objects you need to retain them
- Bumps up the retain count before the release happens

name = [NSMutableString string];

// We want to name to remain valid!
[name retain];

/]
// Eventually, we’ll release it (maybe in our -dealloc?)

[name release];
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Side Note: Garbage Collection

* Autorelease is not garbage collection
* Objective-C on iPhone OS does not have garbage collection
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Objective-C Properties
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Properties

* Provide access to object attributes
* Shortcut to implementing getter/setter methods

» Also allow you to specify:
- read-only versus read-write access

- memory management policy
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Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1instance variables
NSString *name;
int age;

}

// method declarations

- (NSString *)name;

- (void)setName:(NSString *)value;
- (1int)age;

- (void)setAge:(int)age;

- (BOOL)canlLegallyVote;

- (void)castBallot;
@end
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Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end
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Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end
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Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end
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Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1instance variables
NSString *name;
int age;

// property declarations

@property int age;

@property (copy) NSString *name;
@property (readonly) BOOL canlLegallyVote;

- (void)castBallot;
@end

Tuesday, January 12, 2010




Synthesizing Properties

@implementation Person

- (int)age {
return age;

(void)setAge:(int)value {
age = value;

(NSString *)name {
return name;

(void)setName:(NSString *)value {
1f (value !'= name) {
[name release];
name = [value copy];

(void)canLegallyVote { ...
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Synthesizing Properties

@implementation Person

- (void)canlLegallyVote { ...
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Synthesizing Properties

@implementation Person

- (void)canlLegallyVote { ...
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Synthesizing Properties

@implementation Person

@synthesize age;
@synthesize name;

- (BOOL)canLegallyVote {
return (Cage > 17);

}

@end
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Property Attributes

 Read-only versus read-write

@property int age; // read-write by default
@property (readonly) BOOL canLegallyVote;

* Memory management policies (only for object properties)

@property (assign) NSString *name; // pointer assignment
@property (retain) NSString *name; // retain called
@property (copy) NSString *name; // copy called
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Property Names vs. Instance Variables

* Property name can be different than instance variable

@interface Person : NSObject {
int numberOfYearsOld;
}

@property int age;

@end
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Property Names vs. Instance Variables

* Property name can be different than instance variable

@interface Person : NSObject {
int numberOfYearsOld;
}

@property int age;
@end

@implementation Person
@synthesize age = numberOfYearsOld;

@end

Tuesday, January 12, 2010




Properties

* Mix and match synthesized and implemented properties
@implementation Person

@synthesize age;
@synthesize name;

- (void)setAge:(int)value {
age = value;

// now do something with the new age value...

}

@end

» Setter method explicitly implemented
* Getter method still synthesized
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Properties In Practice

* Newer APIs use @property
* Older APIs use getter/setter methods

* Properties used heavily throughout UIKit APIs
- Not so much with Foundation APIs

* You can use either approach

- Properties mean writing less code, but “magic” can sometimes
be non-obvious
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Dot Syntax and self

* When used in custom methods, be careful with dot syntax for
properties defined in your class

* References to properties and ivars behave very differently

@interface Person : NSObject
{

3
@property (copy) NSString *name;

@end

NSString *name;
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Dot Syntax and self

* When used in custom methods, be careful with dot syntax for
properties defined in your class

* References to properties and ivars behave very differently

@interface Person : NSObject
{

3
@property (copy) NSString *name;
@end

NSString *name;

@implementation Person
- (void)doSomething {

name = @“Fred”; // accesses 1ivar directly!
self.name = @“Fred”; // calls accessor method
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Common Pitfall with Dot Syntax

What will happen when this code executes?

@implementation Person

- (void)setAge:(int)newAge {
self.age = newAge;

}

@end
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Common Pitfall with Dot Syntax

What will happen when this code executes?

@implementation Person

- (void)setAge:(int)newAge {
self.age = newAge;

3

@end

This is equivalent to:

@implementation Person
- (void)setAge:(int)newAge {
[self setAge:newAge]; // Infinite loop!

}
@end
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Further Reading

* Objective-C 2.0 Programming Language
- “Defining a Class”

- “Declared Properties”
* Memory Management Programming Guide for Cocoa
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Questions?
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