CS193P - Lecture 3

iPhone Application Development

Custom Classes
Object Lifecycle
Autorelease
Properties

Tuesday, January 12, 2010

Announcements

* Assignments 1A and 1B due Wednesday 1/13 at 11:59 PM

- Enrolled Stanford students can email ¢s193p@cs.stanford.edu
with any questions

- Submit early! Instructions on the website...
* Delete the “build” directory manually, Xcode won’t do it

Tuesday, January 12, 2010

Announcements

* Assignments 2A and 2B due Wednesday 1/20 at 11:59 PM
= 2A: Continuation of Foundation tool

- Add custom class
= Basic memory management
- 2B: Beginning of first iPhone application
- Topics to be covered on Thursday, 1/14
- Assignment contains extensive walkthrough

Tuesday, January 12, 2010

Enrolled students & iTunes U

* Lectures have begun showing up on iTunes U
* Lead time is longer than last year

* Come to class!!
- Lectures may not post in time for assignments

Tuesday, January 12, 2010

Office Hours

» Paul’s office hours: Thursday 2-4, Gates B26B
* David’s office hours: Mondays 4-6pm: Gates 360

Tuesday, January 12, 2010

Today'’s Topics

* Questions from Assignment 1A or 1B?
* Creating Custom Classes

* Object Lifecycle

* Autorelease

* Objective-C Properties

Tuesday, January 12, 2010

Custom Classes

Tuesday, January 12, 2010

Design Phase

Tuesday, January 12, 2010

Design Phase

* Create a class
= Person

Tuesday, January 12, 2010

Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)

Tuesday, January 12, 2010

Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)

* What properties should it have?
- Name, age, whether they can vote

Tuesday, January 12, 2010

Design Phase

* Create a class
= Person

* Determine the superclass
- NSObject (in this case)

* What properties should it have?
- Name, age, whether they can vote

« What actions can it perform?
- Cast a ballot

Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File

Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File

Tuesday, January 12, 2010

Class interface declared in header file

Tuesday, January 12, 2010

Class interface declared in header file

@interface Person

Tuesday, January 12, 2010

Class interface declared in header file

@interface Person : NSObject

Tuesday, January 12, 2010

Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject

Tuesday, January 12, 2010

Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

Tuesday, January 12, 2010

Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

Tuesday, January 12, 2010

Class interface declared in header file

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1nstance variables
NSString *name;
int age;

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end

Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File
. Y

Tuesday, January 12, 2010

Implementing custom class

* Implement setter/getter methods
* Implement action methods

Tuesday, January 12, 2010

Class Implementation

Tuesday, January 12, 2010

Class Implementation

#import "Person.h"

Tuesday, January 12, 2010

Class Implementation

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010

Class Implementation

#import "Person.h"

@implementation Person

(int)age {
return age;

- (void)setAge:(int)value {
age = value;

}
//... and other methods

@end

Tuesday, January 12, 2010

Calling your own methods

Tuesday, January 12, 2010

Calling your own methods

#import "Person.h"
@implementation Person
- (BOOL)canLegallyVote {

}

- (void)castBallot {

Tuesday, January 12, 2010

Calling your own methods

#import "Person.h"
@implementation Person
- (BOOL)canLegallyVote {

return ([self age] >= 18);
}

- (void)castBallot {

Tuesday, January 12, 2010

Calling your own methods

#import "Person.h"
@implementation Person

- (BOOL)canLegallyVote {

return ([self age] >= 18);
}

- (void)castBallot {

1f ([self canLegallyVote]) {
// do voting stuff
} else {
NSLog (@“I’m not allowed to vote!”);

Tuesday, January 12, 2010

Superclass methods

* As we just saw, objects have an implicit variable named “self”
= Like “this” in Java and C++

» Can also invoke superclass methods using “super”

Tuesday, January 12, 2010

Superclass methods

* As we just saw, objects have an implicit variable named “self”
« Like “this” in Java and C++

» Can also invoke superclass methods using “super”

- (void)doSomething {
// Call superclass implementation first
[super doSomething];

// Then do our custom behavior

int foo = bar;
/] ...

Tuesday, January 12, 2010

Object Lifecycle

Tuesday, January 12, 2010

Object Lifecycle

* Creating objects
* Memory management
* Destroying objects

Tuesday, January 12, 2010

Object Creation

Tuesday, January 12, 2010

Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

Tuesday, January 12, 2010

Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

+ alloc
- Class method that knows how much memory is needed

Tuesday, January 12, 2010

Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

+ alloc
- Class method that knows how much memory is needed

- 1nit
- Instance method to set initial values, perform other setup

Tuesday, January 12, 2010

Create = Allocate + Initialize

Tuesday, January 12, 2010

Create = Allocate + Initialize

Person *person = nil;

Tuesday, January 12, 2010

Create = Allocate + Initialize

Person *person = nil;

person = [[Person alloc] init];

Tuesday, January 12, 2010

Implementing your own -init method

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010

Implementing your own -init method

#import "Person.h"
@implementation Person

- (1d)init {

Tuesday, January 12, 2010

Implementing your own -init method

#import "Person.h"
@implementation Person

- (id)init {
// allow superclass to initialize its state first
1f (self = [super init]) {

}

return self;

}
@end

Tuesday, January 12, 2010

Implementing your own -init method

#import "Person.h"
@implementation Person

- (id)init {
// allow superclass to initialize its state first
1f (self = [super init]) {
age = 0;
name = @“Bob”;

// do other initialization...

}

return self;

}
@end

Tuesday, January 12, 2010

Multiple init methods

» Classes may define multiple init methods
- (1d)init;
- (1d)initWithName:(NSString *)name;
- (1d)initWithName:(NSString *)name age:(int)age;

Tuesday, January 12, 2010

Multiple init methods

» Classes may define multiple init methods
- (1d)init;
- (1d)initWithName:(NSString *)name;
- (1d)initWithName:(NSString *)name age:(int)age;

» Less specific ones typically call more specific with default values

- (id)init {
return [self initWithName:@“No Name”];

}

- (1d)initWithName:(NSString *)name {
return [self initWithName:name age:0];

}

Tuesday, January 12, 2010

Finishing Up With an Object

Person *person = nil;

person = [[Person alloc] init];

Tuesday, January 12, 2010

Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];

[person doSomethingElse];

Tuesday, January 12, 2010

Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];

[person doSomethingElse];

// What do we do with person when we’re done?

Tuesday, January 12, 2010

Memory Management

Allocation

Destruction

Tuesday, January 12, 2010

Memory Management

Allocation

malloc

Destruction

free

Tuesday, January 12, 2010

Memory Management

C
Objective-C

Allocation
malloc

alloc

Destruction
free

dealloc

Tuesday, January 12, 2010

Memory Management

Allocation Destruction

C malloc free

Objective-C alloc dealloc

» Calls must be balanced
- Otherwise your program may leak or crash

Tuesday, January 12, 2010

Memory Management

Allocation Destruction

C malloc free

Objective-C alloc dealloc

» Calls must be balanced
- Otherwise your program may leak or crash

* However, you'll never call -dealloc directly
- One exception, we'll see in a bit...

Tuesday, January 12, 2010

Reference Counting

Tuesday, January 12, 2010

Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid

Tuesday, January 12, 2010

Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
* +alloc and -copy create objects with retain count == 1

Tuesday, January 12, 2010

Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count

Tuesday, January 12, 2010

Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count

+ -release decrements retain count

Tuesday, January 12, 2010

Reference Counting

* Every object has a retain count
- Defined on NSObject

- As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==
+ -retain increments retain count
 -release decrements retain count

* When retain count reaches 0, object is destroyed
» —~deal loc method invoked automatically

- One-way street, once you're in -dealloc there’s no turning back

Tuesday, January 12, 2010

Balanced Calls

Person *person = nil;

person = [[Person alloc] init];

Tuesday, January 12, 2010

Balanced Calls

Person *person = nil;
person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

Tuesday, January 12, 2010

Balanced Calls

Person *person = nil;
person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

// When we’re done with person, release it
[person release]; // person will be destroyed here

Tuesday, January 12, 2010

Reference counting in action

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];

Retain count decreases to 1 with -release

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];
Retain count decreases to 1 with -release

[person release];

Tuesday, January 12, 2010

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc j

[person retain];

[Retain count increases to 2 with -retain j

[person release];
Retain count decreases to 1 with -release
[person release];

Retain count decreases to 0, -dealloc automatically called

Tuesday, January 12, 2010

Messaging deallocated objects

Tuesday, January 12, 2010

Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

Tuesday, January 12, 2010

Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

[person doSomething]; // Crash!

Tuesday, January 12, 2010

Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

Tuesday, January 12, 2010

Messaging deallocated objects

Person *person = [[Person alloc] init];
/...
[person release]; // Object 1s deallocated

person = nil;

Tuesday, January 12, 2010

Messaging deallocated objects

Person *person = [[Person alloc] init];

/...
[person release]; // Object 1s deallocated

person = nil;

[person doSomething]; // No effect

Tuesday, January 12, 2010

Implementing a -dealloc method

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010

Implementing a -dealloc method

#import "Person.h"
@implementation Person

- (void)dealloc {

Tuesday, January 12, 2010

Implementing a -dealloc method

#import "Person.h"
@implementation Person

- (void)dealloc {
// Do any cleanup that’s necessary
// ...

Tuesday, January 12, 2010

Implementing a -dealloc method

#import "Person.h"
@implementation Person
- (void)dealloc {
// Do any cleanup that’s necessary

/.

// when we’re done, call super to clean us up
[super dealloc];

Tuesday, January 12, 2010

Object Lifecycle Recap

* Objects begin with a retain count of 1
* Increase and decrease with -retain and -release
» When retain count reaches 0, object deallocated automatically

* You never call dealloc explicitly in your code
- Exception is calling -[super dealloc]

- You only deal with alloc, copy, retain, release

Tuesday, January 12, 2010

Object Ownership

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name; // Person class “owns” the name
int age;

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end

Tuesday, January 12, 2010

Object Ownership

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010

Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

Tuesday, January 12, 2010

Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

1f (name !'= newName) {
[name release];
name = [nhewName retain];
// name’s retain count has been bumped up by 1

Tuesday, January 12, 2010

Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

Tuesday, January 12, 2010

Object Ownership

#import "Person.h"
@implementation Person

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

1f (name !'= newName) {
[name release];
name = [newName copy];
// name has retain count of 1, we own it

Tuesday, January 12, 2010

Releasing Instance Variables

#import "Person.h"

@implementation Person

Tuesday, January 12, 2010

Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {

Tuesday, January 12, 2010

Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {

// Do any cleanup that’s necessary
[name release];

Tuesday, January 12, 2010

Releasing Instance Variables

#import "Person.h"
@implementation Person

- (void)dealloc {

// Do any cleanup that’s necessary
[name release];

// when we’re done, call super to clean us up
[super dealloc];

Tuesday, January 12, 2010

Autorelease

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

firstName, lastName];

return result;

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];

return result;

Wrong: result is leaked!

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result release];

return result;

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result release];

return result;

Wrong: result is released too early!
Method returns bogus value

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

firstName, lastName];

return result;

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result autorelease];

return result;

Tuesday, January 12, 2010

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result autorelease];

return result;

Just right: result is released, but not right away
Caller gets valid object and could retain if needed

Tuesday, January 12, 2010

Autoreleasing Objects

* Calling -autorelease flags an object to be sent release at some
point in the future

» Let’s you fulfill your retain/release obligations while allowing an
object some additional time to live

* Makes it much more convenient to manage memory
* Very useful in methods which return a newly created object

Tuesday, January 12, 2010

Method Names & Autorelease

Tuesday, January 12, 2010

Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

Tuesday, January 12, 2010

Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

Tuesday, January 12, 2010

Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

Tuesday, January 12, 2010

Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

NSMutableString *string = [NSMutableString string]l;
// The method name doesn’t indicate that we need to release it
// So don’t- we’re cool!

Tuesday, January 12, 2010

Method Names & Autorelease

* Methods whose names includes alloc, copy, or new
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

NSMutableString *string = [NSMutableString string]l;
// The method name doesn’t indicate that we need to release it
// So don’t- we’re cool!

* This is a convention- follow it in methods you define!

Tuesday, January 12, 2010

How does -autorelease work?

Tuesday, January 12, 2010

How does -autorelease work?

* Object is added to current autorelease pool

Tuesday, January 12, 2010

How does -autorelease work?

* Object is added to current autorelease pool

* Autorelease pools track objects scheduled to be released
- When the pool itself is released, it sends -release to all its objects

Tuesday, January 12, 2010

How does -autorelease work?

* Object is added to current autorelease pool

* Autorelease pools track objects scheduled to be released
- When the pool itself is released, it sends -release to all its objects

» UIKit automatically wraps a pool around every event dispatch

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

-)

Pool

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

~

Pool

~

Tuesday, January 12, 2010

Objects autoreleased

/ here go into pool
&

&

Pool created

Autorelease Pools (in pictures)

~

Pool

~

Tuesday, January 12, 2010

Objects autoreleased

/ here go into pool
&

&

Pool created

Autorelease Pools (in pictures)

-)

POO I Objects autoreleased

. / here go into pool
u N
9 ..

&

s [object
autorelease];

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

-)

b
POO I Objects autoreleased

/ here go into pool
&

&

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

-)

b
POO I Objects autoreleased

/ here go into pool
3 ® *

&

&

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

-)

b
POO I Objects autoreleased

/ here go into pool
3 ® *

&

&

Pool released

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

-)

‘//,[object release];

¥
POOI Objects autoreleased
i / here go into pool
? P < N

_A Y, 4

/

[object release];
Pool released

Pool created

Tuesday, January 12, 2010

Autorelease Pools (in pictures)

~

Pool

~

Tuesday, January 12, 2010

Pool released

Objects autoreleased

/ here go into pool
&

&

Pool created

Hanging Onto an Autoreleased Object

* Many methods return autoreleased objects
- Remember the naming conventions...

- They’re hanging out in the pool and will get released later

* If you need to hold onto those objects you need to retain them
- Bumps up the retain count before the release happens

Tuesday, January 12, 2010

Hanging Onto an Autoreleased Object

* Many methods return autoreleased objects
- Remember the naming conventions...

- They’re hanging out in the pool and will get released later

* If you need to hold onto those objects you need to retain them
- Bumps up the retain count before the release happens

name = [NSMutableString string];

// We want to name to remain valid!
[name retain];

/]
// Eventually, we’ll release it (maybe in our -dealloc?)

[name release];

Tuesday, January 12, 2010

Side Note: Garbage Collection

* Autorelease is not garbage collection
* Objective-C on iPhone OS does not have garbage collection

Tuesday, January 12, 2010

Objective-C Properties

Tuesday, January 12, 2010

Properties

* Provide access to object attributes
* Shortcut to implementing getter/setter methods

» Also allow you to specify:
- read-only versus read-write access

- memory management policy

Tuesday, January 12, 2010

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1instance variables
NSString *name;
int age;

}

// method declarations

- (NSString *)name;

- (void)setName:(NSString *)value;
- (1int)age;

- (void)setAge:(int)age;

- (BOOL)canlLegallyVote;

- (void)castBallot;
@end

Tuesday, January 12, 2010

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end

Tuesday, January 12, 2010

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end

Tuesday, January 12, 2010

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
int age;

- (void)castBallot;
@end

Tuesday, January 12, 2010

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1instance variables
NSString *name;
int age;

// property declarations

@property int age;

@property (copy) NSString *name;
@property (readonly) BOOL canlLegallyVote;

- (void)castBallot;
@end

Tuesday, January 12, 2010

Synthesizing Properties

@implementation Person

- (int)age {
return age;

(void)setAge:(int)value {
age = value;

(NSString *)name {
return name;

(void)setName:(NSString *)value {
1f (value !'= name) {
[name release];
name = [value copy];

(void)canLegallyVote { ...

Tuesday, January 12, 2010

Synthesizing Properties

@implementation Person

- (void)canlLegallyVote { ...

Tuesday, January 12, 2010

Synthesizing Properties

@implementation Person

- (void)canlLegallyVote { ...

Tuesday, January 12, 2010

Synthesizing Properties

@implementation Person

@synthesize age;
@synthesize name;

- (BOOL)canLegallyVote {
return (Cage > 17);

}

@end

Tuesday, January 12, 2010

Property Attributes

 Read-only versus read-write

@property int age; // read-write by default
@property (readonly) BOOL canLegallyVote;

* Memory management policies (only for object properties)

@property (assign) NSString *name; // pointer assignment
@property (retain) NSString *name; // retain called
@property (copy) NSString *name; // copy called

Tuesday, January 12, 2010

Property Names vs. Instance Variables

* Property name can be different than instance variable

@interface Person : NSObject {
int numberOfYearsOld;
}

@property int age;

@end

Tuesday, January 12, 2010

Property Names vs. Instance Variables

* Property name can be different than instance variable

@interface Person : NSObject {
int numberOfYearsOld;
}

@property int age;
@end

@implementation Person
@synthesize age = numberOfYearsOld;

@end

Tuesday, January 12, 2010

Properties

* Mix and match synthesized and implemented properties
@implementation Person

@synthesize age;
@synthesize name;

- (void)setAge:(int)value {
age = value;

// now do something with the new age value...

}

@end

» Setter method explicitly implemented
* Getter method still synthesized

Tuesday, January 12, 2010

Properties In Practice

* Newer APIs use @property
* Older APIs use getter/setter methods

* Properties used heavily throughout UIKit APIs
- Not so much with Foundation APIs

* You can use either approach

- Properties mean writing less code, but “magic” can sometimes
be non-obvious

Tuesday, January 12, 2010

Dot Syntax and self

* When used in custom methods, be careful with dot syntax for
properties defined in your class

* References to properties and ivars behave very differently

@interface Person : NSObject
{

3
@property (copy) NSString *name;

@end

NSString *name;

Tuesday, January 12, 2010

Dot Syntax and self

* When used in custom methods, be careful with dot syntax for
properties defined in your class

* References to properties and ivars behave very differently

@interface Person : NSObject
{

3
@property (copy) NSString *name;
@end

NSString *name;

@implementation Person
- (void)doSomething {

name = @“Fred”; // accesses 1ivar directly!
self.name = @“Fred”; // calls accessor method

Tuesday, January 12, 2010

Common Pitfall with Dot Syntax

What will happen when this code executes?

@implementation Person

- (void)setAge:(int)newAge {
self.age = newAge;

}

@end

Tuesday, January 12, 2010

Common Pitfall with Dot Syntax

What will happen when this code executes?

@implementation Person

- (void)setAge:(int)newAge {
self.age = newAge;

3

@end

This is equivalent to:

@implementation Person
- (void)setAge:(int)newAge {
[self setAge:newAge]; // Infinite loop!

}
@end

Tuesday, January 12, 2010

Further Reading

* Objective-C 2.0 Programming Language
- “Defining a Class”

- “Declared Properties”
* Memory Management Programming Guide for Cocoa

Tuesday, January 12, 2010

Questions?

Tuesday, January 12, 2010

