
CS193k, Stanford Handout #17
Spring, 99-00 Nick Parlante

Advanced

XML Niche
Structured
Standard Parsing
Text + tags
Tree structure
e.g. pref file

XML DTD
Define meta info
Define format -- e.g. MS Word 6
Used by editor tools
Used by verifiers

Does not solve everything
XML defines the parsing basis so that two programs may share a tree of

text.
It does not define the interpretation or semantics of that information.
e.g. it is now possible that you can write a program that can read in the MS

Word 2002 doc format, but there's still the matter of interpreting that
document in the same way as Microsoft. XML solves the first half of that
problem -- reading it in.

XML Docs
http://developer.java.sun.com/developer/products/xml/docs/api/
http://www.w3c.org/xml
http://www.xml.com/

Code
Need xml.jar
Perl etc. all are adding XML support

2

1. SAX Parser
Serial Access
L-R notification

2. XmlDocument / DOM
Parse -> Memory Tree
In memory rep of the whole tree
Has a pointer to the root node

Build
Use to build an XML tree in memory for writing out

Costly
The whole XmlDocument approach is more costly than SAX (reading) or

just printlns (writing).

Node Class
The nodes that make up the XML tree
Nodes contain other nodes -- "children"
Nodes can have attribute/value bindings

Root Node
The root node that contains all the content
The root is the one child of the document

1. Writing
Construct the right XmlDocument tree in memory
Write it out

2. Reading
The XmlDocument reads itself into memory
Traverse it and examine the nodes get the data out

DotExample
Root -- "dots"
Root children -- "dot"
Each dot has "x" and "y" attributes

<?xml version="1.0" encoding="UTF-8"?>

3

<dots>
 <dot x="72" y="101" />
 <dot x="72" y="82" />
 <dot x="81" y="65" />
 <dot x="194" y="146" />
 <dot x="191" y="133" />
 <dot x="164" y="84" />
 <dot x="119" y="89" />
</dots>

Creation Methods
1. doc.createElement(tag-string)
2. node.appendChild(node)
3. node.setAttribute(attr-string, value-
string)

Traversal Methods
doc = XmlDocument.
createXmlDocument(in, false);

root = doc.getDocumentElement
nodeList =
root.getElementsByTagName(tag-
string)

nodeList.getLength() -- number of
children

nodeList.item(i) -- get that node
node.getAttribute(attr-string)

Dot Code
// XML tag strings
public final String DOTS = "dots";
public final String DOT = "dot";
public final String X = "x";

4

public final String Y = "y";

/*
Here's our XML format...

 -there's a single doc object
 -there's a single "root" node tagged DOTS
 -there's a DOT node for each dot
 -each DOT node has X and Y attributes
 -the DOTs are appended to the root node

<?xml version="1.0" encoding="UTF-8"?>

<dots>
 <dot x="72" y="101" />
 <dot x="170" y="164" />
 <dot x="184" y="158" />
 <dot x="194" y="146" />
 <dot x="191" y="133" />
 <dot x="164" y="84" />
 <dot x="119" y="89" />
</dots>

*/

/*
 Create the XML node for a single dot.
 We use X and Y attributes to store x and y.
*/
public ElementNode createDotNode(XmlDocument doc, int x, int y) {

ElementNode dotNode = (ElementNode) doc.createElement(DOT);

dotNode.setAttribute(X, Integer.toString(x));
dotNode.setAttribute(Y, Integer.toString(y));

return(dotNode);
}

/*
 Create the whole XML doc object in memory representing the current
 dots state.
 Creat the root node and append all the dot children to it.
*/
public XmlDocument createXML() {

XmlDocument doc = new XmlDocument();

// Create the root node and add to the document
ElementNode root = (ElementNode) doc.createElement (DOTS);
doc.appendChild(root);

// Go through all the dots and append them to the root
// ("dots" is a collection of Points)
Iterator it = dots.iterator();
while (it.hasNext()) {

5

Point point = (Point)it.next();
ElementNode dotNode = createDotNode(doc, point.x, point.y);
root.appendChild(dotNode);

}

return(doc);
}

/*
 Create an XML document for out state, and ask it to write itself out.
*/
public void saveXML(File file) {

try {
Writer out = new OutputStreamWriter (new FileOutputStream(file));
XmlDocument doc = createXML();

doc.write(out, "UTF-8"); // XMLDoc knows how to write itself

out.close();
setDirty(false);

}
catch (Exception e) {

System.err.println("Save XML err:" + e);
}

}

/*
 Inverse of saveXML.
 Build the thing in memory, and itereat through the DOT nodes.
*/
private void loadXML(File file) {

try {
InputStream in = new FileInputStream(file);

// This parses the XML file and builds the XML doc in memory
XmlDocument doc = XmlDocument.createXmlDocument(in, false);

// Get the root
Element root = doc.getDocumentElement();

// Get all the DOT children
NodeList dots = root.getElementsByTagName(DOT);

// Iterate through them
for (int i = 0; i<dots.getLength(); i++) {

Element dot = (Element) dots.item(i);

// Get the X and Y attrs out of the dot node
addDot(Integer.parseInt(dot.getAttribute(X)),

Integer.parseInt(dot.getAttribute(Y)));
}

setDirty(false);
in.close();

6

}
catch (SAXException e) {

System.err.println("XML parse err:" + e.getMessage());
}
catch (IOException e) {

System.err.println("IO err:" + e.getMessage());
}

}

Java Library Areas:

Collections
Built in collections better than Vector -- list, hashMap, Iterator, etc. etc.
All operations to Vector are synchronized which makes it too slow -- that

was in retrospect a design mistake which has been fixed with the new
collections (one has to wonder if the performance-not-important theme
was applied a little too much in Java's design tradeoffs).

Compile-Time Types
Collections are being revised so that the compile-time type is correct -- no

more casting back result of elementAt(int)
The VM will still check the real type at runtime, you just don't need to put

the cast in your source code

JNI
Java Native Interface. Set up Java to be able to call native code. Typically

used to connect Java to some legacy C/C++ code or to call some platform
specific feature.

Security
Java has all sorts of built in classes for signing and encryption

JDBC
JDBC classes provide an API for speaking to an SQL database.
Ideally, a database will have a "JDBC driver"
(Slower) All databases have a (Microsoft) ODBC driver. There's a JDBC-

ODBC bridge that Java programs can go through.

Java 2d
A floating point imaging standard -- 2d imaging standards all look more

similar than different, since they were all influenced by Postscript.
Support for color gradients, anti-aliasing, beziers, and floating point

transforms like shearing and rotating.

7

Java 3d
More embryonic than 2d -- uses some native code. Not the highest

performance, but nice portability. Sun just announced some sort of
strategic linkage with SGI on this.

Servlet / JSP
A nice, portable, relatively fast standard for server side code -- see the

CS193i handouts on servlets (www.stanford.edu/class/cs193i)
JSPs are like ASPs and PHPs, but they are in Java

Jini
Java for networked toasters -- things can discover and cooperate

dynamically by flinging Java around.
(rumor) Supposedly a lot of the excitement within Sun for Java revolves

around such "embedded world of the future" applications. Java's
portability could be crucial in such an environment (if the entities need to
exchange code and objects, as opposed to just data).

I guess the idea is that Microsoft won the desktop, so it's easier to imagine
success another domain. (IMHO) It's more important to make Java work
well on the desktop.

New I/O
Old: One thread / socket
This has problems trying to support a very large number of sockets. Also, it

was too difficult to implement interruption correctly.

New: non-blocking variation
Support very large numbers of simultaneous "in flight" sockets efficiently.

J2ME - Micro Edition
Runs on Windows CE

KVM - smaller than J2ME
Runs on Palm pilot

1. Server Side
Servlets + hot spot + JSP + no GUI
popular now

2. Applets
Used somewhat -- dynamic content

8

Problem: AWT portability
profit center error

Problem: sandbox
Problem: performance (maybe)

3. Applications / Swing
Yes: Custom
For custom applications works great
e.g. The verification tool used against our custom internal database

No: Shrinkwrap 3rd party
Installation problems
Does not pass the "mom" test. Sun needs to push the "jar" format better so it

is possible to send someone something, they double click it, and it just
runs.

Performance problems maybe
AWT = bad reputation
Swing has not yet overcome the bad reputation that AWT created

4. Palm pilot / toaster / java ring
Sun is very excited about the future of this sort of market.

Pro
Java's programmer efficiency and portability are great here

Con
Java's using a lot of memory is a real problem here

Java Dynasty?
Age of interpreted languages
Java Network effects
Good tools, everyone learns it in school, good books for any new project,

Java has a lot of built-in network effect advantages

C/C++
Perl, VB

