
CS193k, Stanford Handout #12
Spring, 99-00 Nick Parlante

Threads 4 / RMI

Semaphore1
Semaphore1 from last time uses the count in a precise way to know exactly

how many threads are waiting. In this way, the notify() is never dropped.

Conservation of notify
The notify() "conserves" the permission to go -- passing from one thread to

another.

if wait
We use if() logic on the waiting side -- when the notify comes through, one

waiter can unblock, even though the count may still be negative.

Semaphore2
More straightforward implementation -- use the classic while-wait

structure. decr() does not make the count negative. notify() is not
conserved, but the logic is much simpler.

Semaphore2 Code
/*
 Alternate, more readable implementation of counting Semaphore --
 uses the classic wait pattern:
 while (!cond) wait();

 In this version, decr() does not move the count < 0,
 although the semaphore may be constructed with a negative
 count.
 This version is slightly less precise than above,
 since the notify() does not know if there is a matching
 wait(). This is not a big deal -- a notify() with no matching
 wait() is cheap. The precise semaphore counts the waits(), so
 it's notify() has a matching wait().
*/
class Semaphore2 {

private int count;

public Semaphore2(int value) {
count = value;

}

// Try to decrement. Block if count <=0.
// Returns on success or interruption.
// The Semaphore value may be disturbed by interruption.
public synchronized void decr() {

while (count<=0) try {
wait();

2

}
catch (InterruptedException inter) {

Thread.currentThread().interrupt();
return;

}
count--;

}

// Increase, unblocking anyone waiting.
public synchronized void incr() {

count++;
notify();

}
}

/*
 Use two Semaphores to get A and B to take turns.
 This code works.
*/
class TurnDemo2 {

Semaphore2 aGo = new Semaphore2(1); // a gets to go first
Semaphore2 bGo = new Semaphore2(0);

// <cut>

public void demo() {
final Semaphore2 finished = new Semaphore2(-1);
new Thread() {

public void run() {
for (int i = 0; i< 10; i++) {b(); }
finished.incr();

}
}.start();

new Thread() {
public void run() {

for (int i = 0; i< 10; i++) {a(); }
finished.incr();

}
}.start();

finished.decr();
System.out.println("All done!");
// Alternative: init Semaphore to 0 and decr() twice

}
}

Q1: if vs. while
Q: What if the decr() used an if instead of a while?
A: This would suffer from barging: another thread makes the count 0 in-

between when the notify() happens and the wait() unblocks.

Q2: if (count==1) notify();

3

Q: what if the incr() tried to be clever and only do the notify when making
the 0->1 transition.

A: this won't work because we might have three threads blocked at
count==0. Suppose incr() happens three times. We need three notifies, not
just one.

Q3 Interruption?
Q: When decr() returns, do you have the lock or not?
A: These implementations, you may or may not have the lock. Suppose the

interrupt comes through not in the wait() but in the count--. It would be
possible to write the Semaphore so it returned something from decr() to
indicate if the lock is now held, but this makes the client side more messy
everywhere.

Wait for threads to finish
The demo example now has a "finished" Semaphore that the launcher uses

to wait for the children. Alternately, could init the Semaphore to 0 and
decr twice. Or, could use join() twice.

4

Remote Method Invocation
Interact with objects on other machines as if they were local
Local "stub" object -- proxy for real remote object

Advantages
Sockets
Easier than sockets -- just looks like message send

Simple
Scales -- you can interact with an object on your machine or somewhere else

with practically the same code.

Performance: OK, not great
Doing your own socket based communication would be faster.

CORBA
CORBA is a language-neutral, platform-neutral -- things are expressed in

the language independent Interface Description Language (IDL)
CORBA provides lots of data transport, but does not move code
CORBA is partly useful, and partly it's a management check-off item since it

gives the appearance of portability and replaceability
RMI provides consistency by just using Java everywhere
RMI can actually move code back and forth -- Corba handles cross-language

compatibility, but it does not move code from one place to another.

JINI
JINI is very much based on the idea of "mobile code". Your CD player sends

UI code that presents the CD players interface to your Palm Pilot. The UI
code then runs on the Palm. In this way, the Palm works with all devices --
even ones it does not know about.

==RMI Structure

FooRemote Interface
Interface off java.rmi.Remote
Everything throws RemoteException
Defines methods visible on client side
The client will actually hold a "stub" object that implements FooRemote
Client messages on the stub get sent back to the real server object.

FooServer
Subclass off UnicastRemoteObject
Implement FooRemote

5

This is the "real" object
Implements the messages mentioned in FooRemote
Can store state and implement other messages not visible in FooRemote

Live/Remote vs. Serialization
Remote
Remote objects use RMI so there really is just one object.
Messages sent on the remote stub tunnel back to execute against the one real

server object.

Non-Remote = Serialized
Non remote arguments and return values use serialization to move copies

back and forth.

rmic tool
Looks at the .class for the real object (FooServer) and generates the "stub"

and "skel" classes used by the RMI system
rmic FooServer -> produces FooServer_Stub.class and FooServer_Skel.class
User code never mentions these classes by name-- they just have to be

present in runtime space of the client and server so the RMI impl can use
them.

Stub
Used on the client side as a proxy for the real object

Skeleton
Used on the server side to get glue things back to the real object

Which Classes in Which Runtime
Client:
FooRemote, FooServer_Stub

Server:
FooRemote, FooServer, FooServer_Stub, FooServer_Skel (i.e. everything)

One directory
Our low-budget solution: build and run everything in one directory, but

launch the client and server jobs on separate machines.
Do not need a CLASSPATH set at all -- we'll rely on the "current directory"

for both server and client

6

Abbreviated Code

FooRemote
public interface FooRemote extends java.rmi.Remote {

public String[] doit() throws RemoteException;
public void install(PipeRemote pipe) throws RemoteException;

Foo Server
public class FooServer extends UnicastRemoteObject

implements FooRemote
{

...

 public String[] doit() throws RemoteException {
Log.print("FooServer: doit start");
serverInternal();

if (pipe != null) pipe.send("Sent on the pipe");

String[] result = new String[2];
result[0] = "hello";
result[1] = " there";
return(result);

}

...
}

7

// Client.java
import java.rmi.*;
import java.math.*;

public class Client {
public static void main(String args[]) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}
try {

String name = "//" + args[0] + "/" + FooRemote.SERVICE;

FooRemote foo = (FooRemote) Naming.lookup(name);

String[] result = (String[]) foo.doit(); // key line

Log.print("Client: result ID " + result.hashCode());
Log.print("Client: received from server -- " + result[0] + result[1]);

PipeRemote pipe = new PipeServer();
Log.print("Client: pipe ID " + pipe.hashCode());

foo.install(pipe);

foo.doit();
} catch (Exception e) {

System.err.println("FooClient exception: " +
e.getMessage());

e.printStackTrace();
}

Log.print("Client: done");
}

}

PipeServer / PipeRemote
Server on client
Send to server
Server messages its PipeRemote, it executes back here on the client where

the real PipeServer is held.

