
CS193k, Stanford Handout #11
Spring, 99-00 Nick Parlante

HW2c — ThreadWeb
Welcome to our last exercise in Java threading. If hw2b was a traditional, nuts-
and-bolts threading exercise, hw2c is a super hip "Internet Age" threading
extravaganza. For this assignment, you will build a little web client that happens
to benefit greatly from Java threading.

All the parts of HW2 are due midnight ending Thu May 11th. There are some
starter materials in the homeworks directory.

2

Here's an overview of how ThreadWeb works: Thread Web starts with a list
URLs loaded from a file. It presents the URLs in a table. When one of Fetch
buttons is clicked, it forks off one or more threads to download the HTML for
each row. A progress bar and some other status fields show the progress of the
downloads. A Stop button can kill off the downloading threads if desired.

Here are the classes which make up ThreadWeb...

WebRow
WebRow is the data model behind one row in the table. It stores the URL and the
downloaded contents.

WebModel
WebModel is a subclass of AbstractTableModel that stores a Vector (or
ArrayList) of WebRows and makes them look like a 2 column table — the
hostname goes in column one and a status string describing the row goes in
column two. The status string shows the time the download completed, and the
number of bytes in the content.

WebWorker
WebWorker is a subclass of Thread that runs the download for a WebRow to get
the latest version of its contents. Clicking the "Fetch" buttons basically forks off a
few WebWorkers.

Semaphore
The classic counting Semaphore — it'll be used off the shelf to throttle the
number of concurrent running WebWorkers to a reasonable level.

ThreadWeb
The root window of everything. Contains all the GUI elements and, for
convenience, keeps pointers to everything else as needed such as the table model,
the thread group, etc.

How It Works
The text below outlines how the pieces fit together. For things that aren't too
interesting, the code is largely given to you (e.g. I/O). For other areas, the
constraints on the solution are given but the code is up to you. You will also need
to dig around in the Sun docs to see how to get the various off-the-shelf classes to
work for you.

WebRow Strategy
The key method in WebRow is download() — a thread can come in on
download() to try to download this row's HTML. The download() may or may
not succeed for any number of reasons, it will probably take between a half a
second and a couple seconds, and it will spend much of its time blocked waiting
for its socket. If it succeeds, the contents of the row should be updated and the
time should be noted.

3

Fortunately, the URL class and other built in Java classes make retrieving HTML
given a URL pretty easy once you know the stream code which, surprise, we're
giving to you...

URLConnection connection = null;
InputStream input = null;

try {
connection = url.openConnection();
connection.connect();
input = connection.getInputStream();
InputStream stream = connection.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(stream));

char[] buff = new char[1024];
int len;
StringBuffer result = new StringBuffer(8000);
while ((len = reader.read(buff, 0, buff.length)) >0) {

result.append(buff, 0, len);
Thread.sleep(100); // required slowdown

}

// Geting to here means success -- do something with result

}
catch(MalformedURLException ignored) {} // Here are many ways to fail
catch(IOException ignored) {}
catch(InterruptedException e) { Thread.currentThread().interrupt(); }
finally {

try{
if (input != null) input.close(); // Subtle, reliable way to make sure

} // socket is released on the way out
catch(IOException ignored) {}

}

Things to notice...

There are many ways the process can break down — your solution
may lump all the it-didn't-work cases together. In that case, the
state of the WebRow should not change.

The code should test Thread.currentThread().isInterrupted()
periodically and bail out appropriately. This will be important later
as you try to get the Stop button to actually stop things.

The Thread.sleep(100) line is a required slowdown for this assignment
— otherwise it all happens too fast to interpret. I want you to see
the progress and interaction of the threads, stop button, progress
bar, etc., and slowing the threads down a little is the best way. It
also helps to cut down on the volume of Internet traffic we
generate.

4

As in lecture, the catch clause of InterruptedException sends itself
interrupt() so that subsequent checks of isInterrupted() will return
true.

Note the use of the finally clause to make sure that the input gets
closed no matter what. This is a classic use of the finally clause.

WebWorker Strategy
The constructor for WebWorker should take the WebRow to do the download()
on, and the ThreadGroup that the thread should belong to. The WebWorker will
need to store pointers to a few other things in its constructor for use later in run().
In its run(), the WebWorker should...

1. Inform the GUI that there is one more thread running, so the GUI
can increment the "Thread" status line which counts the number of
running download threads. This should be the first thing in run().

2. Attempt a download() on the web row

3. If the download is successful setRow() the row back into the data
model (see below)

4. Check for isInterrupted() throughout.

5. Inform the GUI that there is one less download thread running just
before exiting run(). The "Elapsed" label should increase to show
the number of elapsed seconds since the Fetch button was clicked.
Finally, if the download was successful, the progress bar and
"completed" status count should advance by 1.

The screenshot on page 1 shows a download that is running in single-thread
mode and has completed 5 of 6 rows in 15 seconds. You can tell it's running in
single-thread mode since the times are strictly increasing in the rows as your
read down. It's a little slow since I slowed it down to get a screen shot and my
home Internet connection is not that fast anyway. When you have the concurrent
case working, the times will reflect which rows came back first and will not just
be top-down.

The WebWorker operates on a WebRow. However, the WebRow is still installed
in the WebModel acting as the data store for a table, responding to getDataAt(),
etc., so changing it while it's the data model for the table will violate the Swing
thread constraint. What we really want it to run the download freely and then
check the content back in once we've got it all. The solution is to run WebWorker
with a temporary copy of the WebRow. The new, copied WebRow should have
the same URL as the original but be separate otherwise. The copy allows the
WebWorker to work concurrently and independently from the table model.
WebRow() (below) will take care of re-integrating the row with the model after
the row has been successfully downloaded.

5

WebModel Strategy
Much of the WebModel is standard TableModel behavior. It will also need
accessors such as getRow(), addRow(), and setRow() to manipulate the rows. The
getValueAt() should return the URL hostname as the first column, and for the
description it should make up the status string...

Use the empty string if there are no contents.

Otherwise start with the hours:minutes:seconds of when the
download completed. (see the SimpleDateFormat class).

Follow with the length in bytes of the contents.

The cells should not be editable

Finally, the WebModel should have a loadFile(File file) method to read the URLs
line by line out of a file. The I/O looks like...

// The standard incantation to read a text file...
File file = new File(filename)
FileReader fileReader = new FileReader(file);
BufferedReader bufferedReader = new BufferedReader(fileReader);

String line;
while ((line = bufferedReader.readLine()) != null) {

addRow(new WebRow(new URL(line)));
}

ThreadWeb
The ThreadWeb subclass of JFrame can arrange the GUI in a vertical box in the
center of border layout. First there should be the table in a scroller. Give the
scroller a preferred size of 200x150. After that should be the buttons, labels, and
progress bar. Feel free to create a more artful layout if you wish.

The program should load its links from the file on the command line, or the file
"links.txt" if there is no command line argument. I tried to use large sites so our
burst of traffic Thu night will not cause me to be hunted down by a mob of angry
students network administrators.

The tricky part of ThreadWeb is how it implements the Fetch buttons. Here's
what a Fetch needs to do, ignoring the minor issues for a moment: Change the
GUI to the "running" state — fetch buttons disabled, status strings reset, correct
maximum on the progress bar. Create a thread group for all the new threads.
Create a "launcher" thread to launch the worker threads (Pun: the launcher
thread is the "Helen" thread). Having a separate launcher thread allows us to
keep the GUI snappy — we leave the GUI thread to service the GUI. Notice that
GUI reacts snappily to mouse button clicks, etc. even as the download threads
are working and blocking.

Our strategy will be to allocate all the WebWorkers first (creation is cheap) and
then be careful about how many we allow to be running at once (running is

6

expensive). The launcher thread should create one WebWorker for each row and
store them all in an array. After they are all created, the launcher should iterate
through them sending start() to each one (see "throttling" below). Finally the
launcher needs to use join() to wait until all the threads are finished, and then
change the GUI to the "done" state — (stop button disabled, fetch buttons
enabled, progress bar at 0, status strings left as they were. The sto p button
should disable only when all of the WebWorkers have exited. It turns out that
join() succeeds on a thread that has not yet been started, so the launcher can be
indescriminate with its joining.

There are just a couple other complications...

1. Start Throttling
We will have a limit to how many WebWorkers may be running at one time. For
the concurrent fetch, there should be no more than 4 WebWorkers running at one
time, although there may be any number allocated but not started. (You may
experiment with higher values, but please turn the program in with limit of 4.)
Use one instance of the classic counting semaphore to throttle back the rate that
the .start()'s happen. Be careful where you place the incr() and decr() requests so
that each thread that finishes its run() (no matter how!) opens up a slot for
another WebWorker to get started. The "Single Thread Fetch" button just runs the
same code but with the throttle value set to 1.

In our implementation of the classic semaphore, the call to decr() may return
because you have obtained the resource, or it may return because you have. been
interrupted — test which case you got after calling decr().

If the throttle is working, the number-of-threads status string should hover right
at or below the throttle value at first, and gradually go down to zero.

The throttle is actually pretty realistic. Most workstations prefer a relatively small
number of simultaneous sockets (4..30) optimally, and will bog down with less
overall throughput when trying to do more than that at once. We're using a
relatively small throttle value to help keep our network traffic down. There's also
typically an operating system limit on the number of simultaneous open sockets.
Without the throttle, the program would have serious problems given a links.txt
with, say, a few thousand rows. With the throttle it works fine no matter how
many URLs there are in links.txt.

You may want to make a new semaphore for each Fetch run — that way you do
not depend on the semaphore state left behind by the previous run. Interruption
messes up the state of our general semaphore implementation.

2. Interruptions
There are many places to notice interruptions in this algorithm. WebWorkers
should just gracefully exit on interruption. The launcher should be smart enough
not to start new threads once interruption has started. The launcher thread
should still wait for all the workers to exit before changing the GUI to the stop
state — this will be your visual feedback that you have successfully interrupted
all your threads.

7

3. The Stop Button
The Stop button can just do an interrupt() on the thread group. There may be a
tiny lag between hitting the stop button and the die-off of the threads. If the
progress bar or status keeps making progress a second after you hit the stop
button, your threads are not noticing the interruption optimally. On some VMs,
the read() is not necessarily unblocked by the interrupt() making the lag more
irregular. However, even with the lag, interrupted threads should be smart
enough to not advance the progress bar. Interrupted threads should still
decrement the "running threads" label normally, so it should quickly drop
towards 0 when you hit the stop button.

Optional HTML Pane
This last part it totally optional and irrelevant, but neat. In your ThreadWeb
constructor, the following will add an HTML panel at the bottom of the frame...

editor = new JEditorPane("text/html", "");
editor.setEditable(false);
scrollpane = new JScrollPane(editor);
scrollpane.setPreferredSize(new Dimension(200, 100));
box.add(scrollpane);
ListSelectionModel lm = table.getSelectionModel();
lm.addListSelectionListener(this);

Then if you respond to the row selection notification valueChanged() message,
you can take the contents of that row and put it in the HTML editor...

public void valueChanged(ListSelectionEvent e) {
int row = ((ListSelectionModel)e.getSource()).getAnchorSelectionIndex();
if (row>=0) {

// get webRow #row
editor.setText(webRow.getContents().toString());

}
}

The HTML editor classes in Swing are a work in progress. It mostly renders
many of the pages, but eventually blows itself up with exceptions and running
out of memory. It will be interesting to run your code against JDK 1.3 to see if the
HTML render has gotten any bettr. You can leave the fragile HTML feature in —
we won't mess with it.

The Lesson Of Sockets And Threads
If years from now you remember nothing else from our little thread adventure,
try to remember the following exercise. Run the program with the throttle value
at 1. Then run with a throttle value of 4, and then with 8. What sort of speedup
do you see for increasing the concurrency? How does this compare to the
concurrency utilization in HW2b? Why is this? We'll discuss this in lecture. The
basic idea is that concurrency and high latency activities go well together. The
Internet is full of high latency activities.

8

Deliverables
Put all your hw2a, 2b, and 2c materials in one direcrory with a Readme. See the
submit directions in the class directory for help with logistics. Please remove the
.tr files from your directory before submitting

• We should be able to compile with "javac *.java". You should test
your code on the elaines and sagas (dual processors).

• We should be able to run your 2a with "java MagicThread"

• We should be able to run your 2b with "java ThreadBank file.tr". It
should run the transactions and then print out the balances of the
20 accounts one per line with the format account_num balance.

• We should be able to run your 2c with "java ThreadWeb links.txt".
Please set your concurrent download to use a throttle of 4.

