
CS193k, Stanford Handout #7
Spring, 99-00 Nick Parlante

Threads 2

Java : Compile-Time Locks
Java uses a style where the lock acquisition structure is formally structured

at compile time.

Structure
lock(x) {

aaa
bbb

}

vs. RT style (not Java)
{

lock(x);
aaa
bbb
unlock(x);

}

CT features
Can't mess up the balance -- exceptions, etc. -- always balance
Less flexible

Split Transaction Problem
Code
class Account {

int balance;

public synchronized int getBal() { return(balance); }
public synchronized void setBal(int val) {balance = val;}

}

Problem
Two threads could interleave their calls to get/set just so to get the wrong

answer.
The synch is at too fine a grain -- the critical section is larger

Solution
Move the synch out so it covers the whole transaction
public synchronized changeBal(int delta) { balance += delta; }

2

Like a Database -- leave in good state
DB's have an idea of a "transaction" -- a change that happens in full or is

"rolled back" to not have happened at all.

Leave in good state
Think of your messages that way.. a message gets the lock, waits outside the

lock, runs to completion, and leaves the object fully in the new state

Don't worry about order
If the above is true, you don't have to worry about the order the messages

went through.

One Big Lock
This example puts one lock over the whole thing

public synchronized void foo() {
int newValue = read1();
newValue += read2();
newValue = bigLookup(newValue);

String result = new String("foo: " + newValue);

length++;
array[length] = result;

}

Fine Locks
public void foo() {

int value;

synchronized(this) {
value = read1();
value += read2();

}

value = dict.bigLookup(newValue);

String result = new String("foo: " + newValue);

synchronized(array) {
length++;
array[length] = result;

}
}

read1/read2 lock
Suppose that it's important that read1 and read2 reflect one state of the

receiver. We obtain the receiver lock for the duration (depending on
setters being synchronized).

read1/read2 replacement

3

Maybe a better design would be that there's a one method replacement that
effectively does read1/read2 in one operation.

Oop design: methods should meet the needs of the caller

dict.bigLookup()
Suppose the dict object has its own lock -- in this case, we don't need to hold

both locks at once.

new String() + I/O
new is very expensive -- try not to be holding a lock when you do it (or I/O)
As above, the memory manager probably has its own lock

array lock
Suppose the array management code always locks the array first.

array method
Better would be to have a dedicated method, so the convention is more

explicit...
public void addElt(String string) {

synchronized(array) {
length++;
array[length] = string;

}
}

Fine locks Pro: More concurrency
Having finer grain locks, allows more threads to be "in flight" at one time.

Fine locks Con: More cost
Acquiring each lock has a little cost. More locks -> more cost
Especially painful in the common case where we didn't have multiple

threads anyway -- we're still paying the cost.

Fine locks Con: More complex
More locks to manage -- the "one big lock" model is conceptually simple

Fine locks Con: Deadlock

==Classic Deadlock Rules

Deadlock
Have locks x and y

4

One thread acquires x then y
Another thread acquires y then x

The Unhappy Caller
Some code you are calling (and didn't write) may depend on some internal

lock, and so create the (x, y) situation without your knowing

One Deep Ok
If the code you call does its own thing and returns (no call backs to you)

then deadlock cannot occur -- Yay!
EG Vector.addElementAt() can never cause deadlock -- example of Get In

Get Out rule

#1: One Big Lock
If there's just one big lock, you won't have deadlocks.
Further, it's ok if you call things like new that have their own lock, but never

come back and do something that depends on the one big lock

#2: Order The Locks
Establish by design, a fixed order for the locks
Everyone must acquire the locks in that order

Conclusion
Most likely to have problems when mixing separate code modules, each

with some lock logic in it, and each calls the other.
There is no simple recipe to avoid the problem, it just requires overall

understanding.
Simple strategy: have the "one big lock" for correctness, and revisit the

decisions if concurrent efficiency is a real problem.

==Java Thread Syntax

Thread Class
Subclass
Implement run()
class Foo extends Thread {

public void run() {

5

// do whatever
}

}

Plan to fall through bottom
Fall through the bottom of run() normally when done

1. Normally
2. Exception
Debug: catch/print exceptions
Catch/print exceptions in your run() so your thread doesn't die off silently

when it gets an error

No re-use
Once a Thread is done with its run() it cannot be used again.

Runnable Interface
Implement Runnable
implement run() method -- same as
Thread

Pass Runnable obj to Thread ctor

start(), not run()
thread.start()
At this point the thread may be scheduled for time.

Set up first
You can avoid some concurrency problems by getting everthing all set up,

and then calling start

do not call run()

6

Thread vs. Thread of Control
A thread of control represents the real underlying access to CPU.
A Thread object is an object in memory that represents a TOC

Static Methods
TOC
These operate on the current thread of control

Not Thread
Not the thread object that happens to be named.

static Thread Thread.currentThread()

static void Thread.sleep()

static void Thread.yield()

Tragic Syntax #1
Thread t1 = new ThreadSubclass();
t1.start();

t1.yield(); // this does not yield t1, it yields us

Tragic Syntax #2
The Thread object is still just a plain old object that messages can run

against.
Some messages work on the current running thread, not the receiver Thread

object -- yield() and sleep() (these are static in Thread)

class Foo extends Thread {
int value;

public void run() {
for (int i = 0; i<1000; i++) {

bar();
}

}

public synchronized bar() {
i = i +1;

7

Thread.yield(); // Works on the caller thread
this.yield(); // NOT the receiver Foo object
// (Thread.currentThread() == this) is FALSE for the bar() call below

}
}

test {
Foo foo = new Foo();
foo.start();

foo.bar(); // This causes a yield() on our thread, not the Foo object
}

Swing Threading
There's a special Swing thread (we'll think of it as one thread, although it

could be several threads cooperating with locks)
Dequeues real time user events
Translates to paint() and action notifications
Once a swing component is subject to pack() or setVisible, no other thread

should send it Swing sensitve messages such as add(), setPreferredSize(),
getText ...

The Giant Swing Mutex
Like a giant mutex over all the Swing state -- only one thread is allowed to

touch Swing state
EG how could paint(), and pack() work if values were simultaneously

changing?
They are essentially using the One Big Lock strategy on all of Swing
I've come to decide that this is actually a very reasonable way to design

Swing

1. Swing Safe
A few methods are valid to call against Swing, even if you are not the Swing

thread...
repaint(), revalidate(), addXXXListener(), removeXXListener()

2. On the Swing Thread Anyway
As long as you are just responding in, say, action performed, you are in the

Swing thread, so do whatever you want.
Just don't do something that blocks or takes a long time -- for something

costly, create a separate thread and have report back (see below) when it
has something.

8

3. Invoke The Swing Thread
If you are not in the Swing thread, get the Swing thread to do something for

you...
Returns immediately :SwingUtilites.invokeLater(new Runnable() { public

void run() { ...}
Blocks: SwingUtilities.invokeAndWait(new Runnable() { ...

