CS193k, Stanford Handout #10
Spring, 2000-01 Nick Parlante

Threads 4 / RMI

Semaphore?

Alternate implementation -- possibly more readable. Does the
wait/decrement in a different order. Uses the classic while-wait structure.
The count does not go negative here -- so it does not count how many
waiting threads there are. As a result, the notify() may happen at times
when it is not necessary -- no big deal.

Semaphore?2 Code

Al ternate, nore readable inplenmentation of counting Semaphore --
uses the classic wait pattern
while (!'cond) wait();

In this version, decr() does not nove the count < O,

al t hough the semaphore may be constructed with a negative
count .

This version is slightly | ess precise than our first version
since the notify() does not know if there is a matching
wait(). This is not a big deal -- a notify() with no matching
wait() is cheap. The precise semaphore counts the waits(), so
it's notify() has a matching wait().
*/
cl ass Semaphore2 {

private int count;

public Semaphore2(int value) {
count = val ue;
}

/1 Try to decrenment. Block if count <=0.
/1 Returns on success or interruption
/1 The Semaphore value may be disturbed by interruption
public synchronized void decr() {
while (count<=0) try {
wait();

catch (InterruptedException inter) {
Thread. current Thread().interrupt();
return;

}

count - -;

}

/1 lIncrease, unblocking anyone waiting.
public synchronized void incr() {

count ++

notify();

Q1: if vs. while

Q: What if the decr() used an if instead of a while?
A: This would suffer from barging: another thread makes the count 0 in-
between when the notify() happens and the wait() unblocks.

Q2: if (count==1) notify():

Q: what if the incr() tried to be clever and only do the notify when making
the 0->1 transition.
A this won't work because we might have three threads blocked at

count==0. Suppose incr() happens three times. We need three notifies, not
just one.

Q3 Interruption?

Q: When decr() returns, do you have the lock or not?

A: These implementations, you may or may not have the lock. Suppose the
interrupt comes through not in the wait() but in the count--. It would be
possible to write the Semaphore so it returned something from decr() to
indicate if the lock is now held, but this makes the client side more messy
everywhere.

Interrupt() vs. wait(), sleep(), ...

When blocked in wait(), sleep() or possibly 170, an interrupt throws out of
the blocking.

The caller needs to realize if they got control normally, or because of an
interrupt.

Use a try/catch

Unfortunately, in the catch, isinterrupted is no longer true. A simple
strategy is to re-assert interrupt() so that other parts of the code can see
that interruption has happened.

From the Semaphorel code...

public synchronized void decr() {
count - -;
if (count<0) try{
wait();

catch (InterruptedException inter) {
/1 This exception clears the "islnterrupted" bool ean
/1 W reset the boolean to true so our caller
/1 will see that interruption has happened.
Thread. current Thread().interrupt();

Swing Threading
1. One Swing Thread

There's a special Swing thread (we'll think of it as one thread, although it
could be several threads cooperating with locks)

Dequeues real time user events

Translates to paint() and action notifications

Once a swing component is subject to pack() or setVisible, no other thread
should send it Swing sensitive messages such as add(), setPreferredSize(),
getText ...

Except these four messages may be sent from any thread: repaint(),
revalidate(), addXXXListener(), removeXXListener()

2. Swing Notifications -- OK

Any notification, such as actionPerformed() is sent on the Swing thread.
Therefore, your notification code is running on the Swing thread, so you
are allowed to message any swing state from there.

3. One (fast) Thing at a time

The swing thread does one thing to completion, and then does the next
thing.

Therefore, you never get concurrent access problems between two
operations being run on the swing thread. Synchronization is not
required.

Just don't do something that blocks or takes a long time -- for something

costly, create a separate thread and have report back (see below) when it
has something.

4. Enqueue For The Swing Thread

If you are not in the Swing thread, get the Swing thread to do something for
you. The following utilities enqueue something for the Swing thread to do
for you when it next dequeues a job...

Returns immediately: SwingUTtilites.invokeLater(new Runnable() { public
void run() { ...}

Blocks: SwingUgtilities.invokeAndWait(new Runnable() { ...

SwingThread.java

/1 Swi ngThread. java

i mport java.awt.*;

i mport javax.sw ng.*;

i mport javax.sw ng.event.*;

i mport java.awt.event.*;

/*

Denonstrates the affects of the one sw ng thread.

1. Notifications, such as actionPerforned() are done on the
Swi ng thread.

2. Never get concurrent access problens with two

swing thread actions. They inherently go one at a tine.
3. Swing timer class to send periodic nessages on the
Swi ng thread.

4. Doing a long conmputation on the Swing thread | ocks
up the GU.

*/

public class Swi ngThread {

public static void main(String[] args) {
JFrame frame = new JFrame(" Swi ngThread");
JConponent contai ner = (JConponent) frane. get Cont ent Pane();
cont ai ner. set Layout (new Bor der Layout ());

/*****

A

Sinpl e case -- connect a widget to a button.
*/
final Wdget a new W dget (100, 100);
JButton button new JButton("Ilncrenent");
but t on. addAct i onLi st ener (new Acti onLi stener () {

public void actionPerformed(ActionEvent e€) { // on swing thread here
a.increnment();

}
1),

JPanel panel = new JPanel ();

panel . add(button);

panel . add(a);

cont ai ner. add(panel, BorderLayout.NORTH);

/*
B
Increnent button w timer thread al so sending increnment --
no conflict since both on Swi ng thread.
*/
final Wdget b = new Wdget (100, 100);
button = new JButton("Increnment");
but t on. addActi onLi st ener (new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
b.repaint(); /1 2 unnecessary calls to repaint
b.increnent();
b.repaint();

}
1)
Box box = new Box(BoxLayout.Y AXIS);
box. add(button);
box. add(b) ;

/] create tiner for b

final javax.swing. Tinmer tinmer =
new j avax. swi ng. Ti mer (500, new ActionLi stener() {
public void actionPerfornmed(ActionEvent e) {
b.increnent();
}

1),

/1 start/stop button for the tiner
button = new JButton("Start/Stop");
butt on. addActi onLi st ener (new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
if (tinmer.isRunning()) timer.stop();
el se tiner.start();

}
1)
box. add(button);
cont ai ner. add(box, BorderLayout. CENTER)

/*
Cc
Denonstrates occupying the swi ng thread
so not hi ng el se works.
*/
final Wdget ¢ = new Wdget (100, 100);
button = new JButton("C");
but t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
c.increnment();
for (int i=0; i<150000000; i++) {} // occupy the swing thread
c.increnment();
}
1)

panel = new JPanel ();

panel . set Layout (new BoxLayout (panel, BoxLayout.X AXIS));
panel . add(button);

panel . add(c);

cont ai ner. add(panel, BorderLayout.SOUTH);

franme. pack();
franme. setVisible(true);

ThreadGui

Demonstrates launching worker threads to do actual work. They
communicate back to the main thread through the SwingUtilities. The
lanucher thread can detect when all the workers are finished, so it can set
the state of the buttons back.

/1 ThreadGui.java

i mport java.awt.*;

i mport javax.sw ng.*;

i mport javax.sw ng. border. *;

i mport java.awt.event.*;
i mport java.util.?*;

i mport java.net.*;
i mport java.io.*;

i mport javax.sw ng.table.*;

i mport javax.sw ng.event.?*;

i mport javax.sw ng.text.*;

/*

A sinpl e program whi ch denonstrates using threads
to do a long conmputation separate fromthe Swi ng thread.
Uses a progress bar and stop button

*/

/*
Worker Thread class -- does actual work

- Messages the nodel object to do work
(the nodel nessages are thread safe).

-Messages the GUI to update it with the
current status.
*/
cl ass Wirker extends Thread {
WFr ane frane;
I nt Model nodel
bool ean success;

public static final int MAX = 1000000;
public static final int PROGRESS COUNT = 100; /1 nunber of updates we get from
each thread

public Worker (ThreadG oup group, Wrane frame, |ntMdel nodel) ({
super (group, "Worker");

this.frane = frane;
t hi s. nodel = nodel

public void run() {
frane. threadChange(1); // informwe've started

setPriority(getPriority() -1); /1 Not necessary -- may inmprove GUJ
responsi veness

i nt progresshMdul o = (int) MAX/ PROGRESS COUNT + 1;

/1 Loop around and. .
/1 -do work on the nodel
/1 -check for interruption
/1l -message the GUJ about progress
for (int i=0; i<MAX; i++) {
nodel . changeVal ue(1); /1 do actual work

/1 cheap interrupted test
if ((i%0)==0 && islnterrupted()) break

/1 nore expensive Progress notification
if ((i%rogresshbdul o) == 0) {
SwingUtilities.invokelLater(/1 safe way to call any GUJ nmethod
new Runnabl e() {
public void run() {
franme. wor ker Progress();

}
)}
yield(); /!l polite to do this noderately often
}
}
frane.threadChange(-1); // informwe're done
}
}
/*

Sinple, thread safe data nodel that the GUJ owns
and the threads pound on.
*/
cl ass I nt Model ({
i nt val ue;

public IntMdel (int value) {
t his.val ue = val ue;
}

public synchronized int getValue() { /1 NOTE get followed by set is not thread
saf e

}

public synchroni zed void setVal ue(int value) {
thi s.val ue = val ue;
}

public synchroni zed void changeVal ue(int delta) { // NOTE but this is thread
saf e

}

return(val ue);

val ue += delta;

cl ass Wrame extends JFrane {
public static final boolean JON = true; // Controls which end strategy is used
/1 1 now prefer the "join" strategy

| nt Model nodel ;
JConponent cont ai ner;

JButton startButton, stopButton;
JProgressBar progress;
Thr eadG oup t hreadG oup;

/] The current state
i nt toBeDoneThr eads;
i nt doneThr eads;

i nt runni ngThr eads;
int aliveCount;
JLabel | abel;

Vect or threads;

public Wrranme(String title) {
super(title);

nodel = new | nt Mbdel (0);
runni ngThreads = O;
al i veCount = 0;

cont ai ner = (JComnponent) get Cont ent Pane() ;
cont ai ner. set Layout (new Bor der Layout (6, 6));

Box box = new Box(BoxLayout.Y AXIS);
cont ai ner. add(box, BorderLayout.CENTER);

JButton button = new JButton("Start");
box. add(button);
butt on. addAct i onLi st ener (
new ActionLi stener() {
public void actionPerfornmed(ActionEvent e) {
userStart();
}

}
)

startButton = button;

| abel = new JLabel (" ");
box. add(| abel) ;

progress = new JProgressBar();
box. add(pr ogr ess);

button = new JButton("Stop");

box. add(button);
but t on. addAct i onLi st ener (
new Acti onLi stener() {
public void actionPerformed(ActionEvent e) {
user Stop();

}
)

stopButton = button;

pack();
set Vi si bl e(true);

/*
The | auncher.
Init the thread tracking state, and then launch a thread to | aunch
all the workers. Al the threads are in a thread group to make interruption
conveni ent.
*/
public void userStart() {
final int WORKERS = 8;

t hreadG oup = new Thr eadG oup("Worker threads");

/1 Here we are the Swing thread, so we can touch al
/1 this state safely.

st opBut t on. set Enabl ed(true);

start Button. set Enabl ed(fal se);

/1l This state is nostly for the non-JO N way

t oBeDoneThreads = WORKERS+1; // how nmany threads need to finish for us to be
"done"

doneThreads = O;

al i veCount = 0;

runni ngThreads = O;

progress. set Maxi mun{ WORKERS * Wor ker . PROGRESS COUNT) ;
progress. set Val ue(0);

t hreads = new Vector();

new Thread(threadG oup, "Wdrker Launcher") {
public void run() {
t hreadChange(1); // informwe're starting

/|l start all the worker threads
int i;
for (i = 0; i< WORKERS; i++) {
if (islnterrupted()) {
/1 TRICKY update the goal if we are exiting early
t oBeDoneThreads = i +1

br eak;

/ "join" strategy
f (Wrrame.JON) {
Wor ker worker = new Wbrker(threadG oup, WFrane.this, nodel);
t hr eads. addEl enent (wor ker) ;
wor ker.start();
} else {
/1 "int" strategy
Wor ker wor ker = new Wor ker (t hreadG oup, Wrrane.this, nodel);
wor ker . start();

}

/! Here is the JON strategy to wait for the workers to finish
if (Wrrame.JAO N {
for (i =0; i< threads.size(); i++) {
try{
((Worker)threads. elementAt(i)).join();

}
catch (InterruptedException ignored) {}
}

/1 Set the GUI back when all the workers have exited
SwingUtilities.invokelLater(
new Runnabl e() {
public void run() {
t hr eadDone() ;

}
}
)
}
t hreadChange(-1); // informwe're finishing
}
}.start();
}
/*
The stop button has been clicked -- go interrupt all the threads.

In 1.2 you can wite threadGoup.interrupt().
In 1.1 it needs to be witten as bel ow
*/
public void userStop() {
Thread threads[] = new Thread[100];
int len = threadG oup. enunerat e(threads);
for (int i=0; i<len; i++) {
threads[i].interrupt();
}

/*
Sent by the threads when they start and top.
+1 == starting

-1 == ending
This is a "safe" nethod.
Mai nt ai ns the runni ngThreads | abel in the GU
Noti ces when all the threads have finished and
update the GJ (join() in the launcher is a better
way to detect that all the threads are done).
*/
public synchronized void threadChange(int delta) {
runni ngThreads += delta;
SwingUilities.invokelLater(
new Runnabl e() {
public void run() {
| abel . set Text ("" + runni ngThr eads);
}

)

if (delta == -1) {
doneThr eads++;

if (!Wrame.JO N && doneThreads == toBeDoneThreads) ({
SwingUtilities.invokelLater(
new Runnabl e() {
public void run() {
t hr eadDone() ;
}

}

/1 Reset the GU to the "threads are done" state
public void threadDone() {
progress. set Maxi mun{ 0) ;
progress. set Val ue(0);
st opBut t on. set Enabl ed(f al se);
startButton. set Enabl ed(true);

/1 Sent by the threads periodically
/1 This is not a safe nethod, the worker is responsible
/1l for safety (see Worker).
public synchronized void workerProgress() {
al i veCount ++
progress. set Val ue(al i veCount) ;

}
public class ThreadGui {

public static void main(String args[]) {
new Wrrame(" Thread GQui");
}

11

12

Remote Method Invocation - RMI

Interact with objects on other machines as if they were local
Local "stub" object -- proxy for real remote object

Advantages

Sockets
Easier than sockets -- just looks like message send
Simple
Scales -- you can interact with an object on your machine or
somewhere else with practically the same code.
Performance: OK, not great
Doing your own socket based communication would be faster.

CORBA

CORBA is a language-neutral, platform-neutral -- things are expressed in
the language independent Interface Description Language (IDL)

CORBA provides lots of data transport, but does not move code

CORBA is partly useful, and partly it's a management check-off item since it
gives the appearance of portability and replaceability

RMI provides consistency by just using Java everywhere

RMI can actually move code back and forth -- Corba handles cross-language
compatibility, but it does not move code from one place to another.

JINI

JINI is very much based on the idea of "mobile code". Your CD player sends
Ul code that presents the CD players interface to your Palm Pilot. The Ul
code then runs on the Palm. In this way, the Palm works with all devices --
even ones it does not know about.

==RMI Structure
FooRemote Interface

Interface off java.rmi.Remote

Everything throws RemoteException

Defines methods visible on client side

The client will actually hold a "stub” object that implements FooRemote
Client messages on the stub get sent back to the real server object.

FooServer

Subclass off UnicastRemoteObject

Implement FooRemote

This is the "real" object

Implements the messages mentioned in FooRemote

Can store state and implement other messages not visible in FooRemote

13

Live/Remote vs. Serialization

Remote
Remote objects use RMI so there really is just one object.
Messages sent on the remote stub tunnel back to execute against the
one real server object.
Non-Remote = Serialized
Non remote arguments and return values use serialization to move
copies back and forth.

rmic tool

Looks at the .class for the real object (FooServer) and generates the "stub”
and "skel" classes used by the RMI system

rmic FooServer -> produces FooServer_Stub.class and FooServer_Skel.class

User code never mentions these classes by name-- they just have to be
present in runtime space of the client and server so the RMI impl can use
them.

Stub

Used on the client side as a proxy for the real object

Skeleton

Used on the server side to get glue things back to the real object

Which Classes in Which Runtime

Client:
FooRemote, FooServer_Stub
Server:
FooRemote, FooServer, FooServer_Stub, FooServer_Skel (i.e.
everything)
One directory
Our low-budget solution: build and run everything in one directory,
but launch the client and server jobs on separate machines.
Do not need a CLASSPATH set at all -- we'll rely on the "current
directory" for both server and client

Abbreviated Code
FooRemote

public interface FooRenpte extends java.rm.Renmpte {

public String[] doit() throws RenoteException;

Foo Server

public class FooServer extends Uni cast Renot eObj ect
i mpl enent s FooRenot e

{
public String[] doit() throws RenoteException {
Log. print ("FooServer: doit start");
serverinternal ();
String[] result = new String[2];
result[0] = "hello";
result[1] =" there";
return(result); /1 this will serialize
}
}

// Client.java

i mport java.rm.*;
i mport java. math. *;

public class Cient {
public static void main(String args[]) {

try {
/1 snip setup
FooRenote foo = (FooRenote) Nam ng. | ookup(nane);
String[] result = (String[]) foo.doit(); // key line
} catch (Exception e) {
Systemerr.println("FooC ient exception: " +

e. get Message()) ;
e.printStackTrace();

