
CS193k, Stanford Handout #6
Spring, 2000-01 Nick Parlante

Threads 2

Hardware
Here are some hardware factoids to illustrate the increasing

transistor budget.
The cost of a chip is related to its size in mm^2. It's a super-linear

function -- doubling the size more than doubles the cost.
1989: 486 -- 1.0 um -- 1.2M transistors -- 79mm2
1995: Pentium MMX 0.35 um -- 5.5 M trans -- 128 mm2
1997: AMD athlon -- 0.25 um -- 22M trans -- 184mm2
2000: Pentium 4 -- 0.18um -- 42M trans -- 217 mm2

Q: what do we do with all these transistors?
A: more cache
A: more functional units
A: multiple threads

Recall
From previous handout
Lock in the receiver
-every method must synch
-instances vs. static data
-instances with one shared object (similar to above)
-static methods vs. instance
-too fine grain

Get In and Get Out
It's generally regarded as good style to hold the lock as little as

possible
1. acquire the lock
2. do the critical operation quickly
3. release the lock

Like a Database -- leave in good state
DB's have an idea of a "transaction" -- a change that happens in full or

is "rolled back" to not have happened at all.
Leave in good state

Think of your messages that way.. a method gets the lock, makes all its
changes (with sole possession of the lock), releases the lock leaving
the object fully in the new state. Don't release the lock when the
object is partially in the new state.

2

Don't worry about order
If the above is true, you don't have to worry about the order the

methods happened to acquire the lock.

One Big Lock
This example puts one lock over the whole thing

public synchronized void foo() {
int newValue = read1();
newValue += read2();

newValue = dict.lookup(newValue);

String result = new String("foo: " + newValue);

length++;
array[length] = result;

}

Fine Locks
This example uses two locks to have smaller critical sections +

some sections are done without any lock
public void foo() {

int value;

synchronized(this) {
value = read1();
value += read2();

}

value = dict.lookup(newValue);

String result = new String("foo: " + newValue);

synchronized(array) {
length++;
array[length] = result;

}
}

read1/read2 lock
Suppose that it's important that read1 and read2 reflect one state of the

receiver. We obtain the receiver lock for the duration (depending on
setters being synchronized).

read vs. lookup
Is it important that read() and lookup() happen without any state

changes in between? They are not under one lock with the fine grain
design.

read1/read2 replacement
Maybe a better design would be that there's a one method replacement

that effectively does read1/read2 in one operation.
OOP design: methods should meet the needs of the caller

3

dict.lookup()
The fine grain version assumes that lookup() is itself thread safe (or we

could synchronize it ourselves)
new String() + I/O

new is very expensive -- try not to be holding a lock when you do it (or
I/O)

array lock
We'll use the convetion that the array-changing code gets the array

lock first.
array method

Better would be to have a dedicated method, so the convention is more
explicit...

public void addElt(String string) {
synchronized(array) {

length++;
array[length] = string;

}
}

Fine locks Pro: More concurrency
Having finer grain locks, allows more threads to be "in flight" at one

time.

Fine locks Con: More cost
Acquiring each lock has a little cost. More locks -> more cost
Especially painful in the common case where we didn't have multiple

threads anyway -- we're still paying the cost.

Fine locks Con: More complex
More locks to manage -- the "one big lock" model is conceptually

simple

Fine locks Con: Deadlock

Design: Client vs. Implementation
Client synch

The operation, lookup or whatever, is not internally synchronized. The
client includes synchronization in their code to avoid calling the
method in an unsafe way.

Implementation synch
The method is either synchronized or includes internal

synchronization so that it can be called by multiple threads.
The client can be unaware of the threading issues, and just works since

the implementation takes care of it.

4

Comparison
+From a design point of view, doing the synch in the implementation

is better. Reducing what the client needs to know is a better OOP
design.

-Optimization -- it's possible that the synchronization in the
implementation then does not allow an intelligent and agressive
client from making certain optimizations -- e.g. using no locks in
certain cases.

==Classic Deadlock Rules

Deadlock
Have locks x and y
One thread acquires x then y
Another thread acquires y then x

The Unhappy Caller
Some code you are calling (and didn't write) may depend on some

internal lock, and so create the (x, y) situation without your knowing

One Deep Ok
If the code you call does its own thing and returns (no call backs to

you) then deadlock cannot occur -- Yay!
EG Vector.addElementAt() can never cause deadlock -- example of Get

In Get Out rule

#1: One Big Lock
If there's just one big lock, you won't have deadlocks.
Further, it's ok if you call things like new that have their own lock, but

never come back and do something that depends on the one big lock

#2: Order The Locks
Establish by design, a fixed order for the locks
Everyone must acquire the locks in that order
If all the code follows the order, you can't get deadlock.

Conclusion
Most likely to have problems when mixing separate code modules,

each with some lock logic in it, and each calls the other.
There is no simple recipe to avoid the problem, it just requires overall

understanding.
Simple strategy: have the "one big lock" for correctness, and revisit the

decisions if concurrent efficiency is a real problem.

5

--Java Thread Syntax

Thread Class
class MyThread extends Thread {

public void run() {
// do whatever

}
}

Subclass off Thread
Implement run()
Plan to fall through bottom

Fall through the bottom of run() normally when done
1. Normally
2. Exception

An uncaught exception will come back out to the run()
Debug: catch/print exceptions

For debugging, you may want to Catch/print exceptions in your run()
so your thread doesn't die off silently when it gets an error.

No re-use
Once a Thread is done with its run() it cannot be used again.

Runnable Interface
class MyClass extends Whatever implements Runnable() {

public void run() {
...

}
...

}

Implement Runnable (an Interface)
Implement run() method -- same as Thread
Pass Runnable obj to Thread ctor

start(), not run()
thread.start()

At this point the thread may be scheduled for time.
Set up first

You can avoid some concurrency problems by getting everthing all set
up, and then calling start

never call thread.run()

6

Thread vs. System Thread
We'll say that a "system thread" represents the real underlying access

to CPU -- something that's actually running.
A Thread object is Java object in memory that represents a system

thread

Static Methods -- Tricky
Current running thread

These operate on the currently running system thread that is running
the lines of code

Not Thread
Not necessarily the Thread object that happens to be the receiver

static Thread Thread.currentThread()
A Thread object representing the current running thread

static void Thread.sleep()
Force the current running thread to sleep

static void Thread.yield()
Force the current running thread to yield (allow other threads to get

some time)

Tragic Syntax #1
Thread t1 = new ThreadSubclass();
t1.start();
t1.yield(); // this does not yield t1, it yields us

7

Tragic Syntax #2
The Thread object is still just a plain old object that messages can run

against.
Some messages work on the current running thread, not the receiver

Thread object -- yield() and sleep() (these are static in Thread)
class Foo extends Thread {

int value;

public void run() {
for (int i = 0; i<1000; i++) {

bar();
}

}

public synchronized bar() {
i = i +1;
Thread.yield(); // Works on the caller thread
this.yield(); // NOT the receiver Foo object
// (Thread.currentThread() == this) is FALSE for the bar() call below

}
}

test {
Foo foo = new Foo();
foo.start();

foo.bar(); // This causes a yield() on our thread, not the Foo object
}

Swing Threading
There's a special Swing thread (we'll think of it as one thread, although

it could be several threads cooperating with locks)
Dequeues real time user events
Translates to paint() and action notifications
Once a swing component is subject to pack() or setVisible, no other

thread should send it Swing sensitve messages such as add(),
setPreferredSize(), getText() ...

The Giant Swing Mutex
Like a giant mutex over all the Swing state -- only one thread (the

Swing thread) is allowed to touch Swing state
EG how could paint(), and pack() work if values were simultaneously

changing?
They are essentially using the One Big Lock strategy on all of Swing
I've come to decide that this is actually the best available way to design

Swing

8

1. Swing Safe
There are few special methods are valid to call against Swing, even if

you are not the Swing thread...
repaint(), revalidate(), addXXXListener(), removeXXListener()

2. On the Swing Thread Anyway
As long as you are just responding in, say, actionPerformed(), you are

in the Swing thread, so do whatever you want. All notifications are
done on the swing thread, so if you are responding to a notification,
you are ok.

Just don't do something that blocks or takes a long time -- for
something costly, create a separate thread and have report back (see
below) when it has something.

3. Invoke The Swing Thread
If you are not in the Swing thread, get the Swing thread to do

something for you...
Returns immediately :SwingUtilites.invokeLater(new Runnable() {

public void run() { ...} }); -- runs the given code on the swing thread
when it becomes available.

Blocks: SwingUtilities.invokeAndWait(new Runnable() { ...

