
CS193k, Stanford Handout #3
Spring, 2000-01 Nick Parlante

Swing 3 + Threads

List Example
Another MVC built-in class
Show using one model with multiple views

MyListModel Code
// MyListModel.java
import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

import java.awt.event.*;
import java.util.*; // for Vector

import javax.swing.event.*;

import java.io.*; // for File

2

/*
 A simple example of implemention a ListModel.
 In this case, we just use Vector.
 AbstractListModel keeps track of the listeners for us, but
 we still need to trigger the notifications.
*/
class MyListModel extends AbstractListModel {

private Vector data = new Vector();

// Must override these two from ListModel
public int getSize() {

return(data.size());
}

public Object getElementAt(int index) {
return(data.elementAt(index)); // could sanity check index

}

// My methods so clients can add and remove elements
// on the data model (clients can also use the standard
// getElementAt() for accessing).
public int addRow(String string) {

data.addElement(string);

// Must send the following
// (AbstractListModel provides the listener support for us)
fireIntervalAdded(this, data.size()-1, data.size()-1);
return(data.size()-1);

}

public void deleteRow(int row) {
// ??? could error check the row int
data.removeElementAt(row);
fireIntervalRemoved(this, row, row);

}

// If we had an operation that CHANGED the contents of a row, we would
// fireContentsChanged(this, row, row)

static int count = 0;

// Demonstrate MyListModel
public static void doList() {

final JFrame frame = new JFrame("List");
final Container container = frame.getContentPane();
container.setLayout(new FlowLayout());

final MyListModel listModel = new MyListModel();
final JList list = new JList(listModel);
JScrollPane scrollpane = new JScrollPane(list);

// could do this, or use the medium default size
// scrollpane.setPreferredSize(new Dimension(200,120));

// Button to add a row to the model
JButton button = new JButton("Add Row");

3

container.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
int newRow = listModel.addRow(Integer.toString(count));
list.setSelectedIndex(newRow);

}
}

);

// Delete the currently selected row
final JButton button2 = new JButton("Delete Row");
container.add(button2);
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

// can return -1
int sel = list.getSelectedIndex();
if (sel != -1) {

listModel.deleteRow(sel);
list.clearSelection();

}
}

}
);

container.add(scrollpane);
frame.setVisible(true);

}

// Demonstrate using a model for a list and a combobox
public static void doShared() {

final JFrame frame = new JFrame("Shared");
final Container container = frame.getContentPane();
container.setLayout(new FlowLayout());

// DefaultComboBoxModel has basic storage built in
// -- has getSize() and addElement()
// DefaultComboBoxModel implements ComboBoxModel
// ComboBoxModel is a subclass of ListModel

final DefaultComboBoxModel model = new DefaultComboBoxModel();
String[] strings = {"Bart", "Homer", "Lisa"};

for(int i=0; i<strings.length; i++) {
model.addElement(strings[i]);

}

final JList list = new JList(model);
JScrollPane scrollpane = new JScrollPane(list);
scrollpane.setPreferredSize(new Dimension(100,100));

4

container.add(scrollpane);
list.getSelectionModel().

setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

JComboBox combo = new JComboBox(model);
container.add(combo);

// Add a row the model
JButton button = new JButton("Add Row");
container.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
model.addElement(Integer.toString(count));

}
}

);

// Read the lines out of a file and add them
JButton button2 = new JButton("Load File");
container.add(button2);
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

JFileChooser chooser = new JFileChooser(".");
int status = chooser.showOpenDialog(frame);
if (status == JFileChooser.APPROVE_OPTION) {

File file = chooser.getSelectedFile();

try {
FileReader fileReader = new FileReader(file);

// The buffered layer is optional by recommended
 Reader bufferedReader = new BufferedReader(fileReader);

 StreamTokenizer tokenizer = new
StreamTokenizer(bufferedReader);

// Try to set the tokenizer to reader "words" line by line
//tokenizer.resetSyntax();
//tokenizer.whitespaceChars('\n', '\r'); // no

//tokenizer.ordinaryChar(' '); // no
//tokenizer.ordinaryChar('\t');

//tokenizer.wordChar(' '); // no such method
tokenizer.wordChars(' ', ' '); // now each line counts as a

token
tokenizer.wordChars('\t', '\t');
int tok;

// The standard loop to get all the tokens in a file
while ((tok = tokenizer.nextToken()) != StreamTokenizer.TT_EOF)

{
model.addElement(tokenizer.sval);

5

}
}
catch (IOException ignored) {
}

}
}

}
);
frame.setVisible(true);

}

public static void main(String args[]) {
doList();
doShared();

}

}

Faster Computers
Why faster?

How is it that computers are faster now than 10 years ago?
a. Process improvements -- chips are smaller and run faster
b. Superscalar pipelining parallelism techniques -- doing more than

one thing at a time from the one instruction stream.
Instruction Level Parallelism -- limit of 3-4x

We are well in to the diminishing-returns region of ILP technology.

100 million transistors
Suppose you have a chip with 100 million transistors
What will you do with them all?
Extract more ILP? -- not really
More and bigger cache -- ok, but there are limits
Explicit concurrency -- YES

Explicit Concurrency
Chip

The chip(s) can support multiple threads.
Software

The software must be coded to use multiple threads -- this is a
significant cost, but we're getting better at it.

6

CPU Concurrency Trends
1. Multiple CPU's
2. "Multiple cores" on one chip

They can share on-chip L1 cache as well
A goo d way to use up more transistors, without doing a whole new

design.
3. Chip Multi-threading

One core with multiple sets of registers
The core shifts between one thread/register-set and another quickly --

say whenever there's an L1 miss.
Neat feature: hide the latency by overlapping a few active threads.

Threading
Thread level vs. Process Level
Threads share address space
OS's now support "inexpensive" threads -- on the order of 10-50 per

process
Separate processes are heavyweight -- separate address space, large

start-up cost

Multiple processors
CPU intensive could get value from extra processor (but why code in

Java for CPU bound problem?)
Memory intensive less so
Disk/Network intensive even less so

Network/Disk -- Hide The Latency
Use threads to efficiently block when data is not there
Even with one CPU, can get excellent results
Suppose very fast CPU, and very slow network -- even with coarse

locking, may get excellent results. The threads are blocked most of
the time anyway, so lock contention is not really a problem.

This is what Java threads are really good for.

Why Concurrency Is Hard
No language construct can make the problem go away (in contrast to

mem management which was made to go away with GC). The
programmer must be involved.

There is no fixed programmer recipe that will just make the problem
go away.

Hard for classes to pass the "clueless client" test -- the client may really
need to understand the internal lock model of a class to use it
correctly.

Concurrency bugs are very, very latent. The easiest bugs are the ones
that happen every time.

7

In contrast, concurrency bugs show up rarely, they are very machine,
VM, and current machine loading dependent, and as a result they are
hard to repeat.

"Concurrency bugs -- the memory bugs of the 21st century."
Rule of thumb: if you see something bizarre happen, don't just pretend

it didn't happen. Note the current state as best you can.

Native vs. Green
Thread Implementation

Green = 1 native thread -- easiest to implement
Native = 1 native thread for each Java thread -- most common
Mixed = n native threads for k Java threads
As of Java 1.2, nobody uses Green threads

Coding Strategies
Cooperative "green" threads -- schedule on yield(), sleep(), lock acquire

(through system call)
In that case, your code should call yield() every now and then.
Native "preemptive" threads -- threads may be scheduled on above +

preemptively
If a program works in green threads, it may still fail with native

threads.

Green Reliability
Green threads are less likely to expose concurrency bugs since they do

not take away the thread of control in the middle of some statements.
{

i = i +1; // won't loose it here
next = a[i]; // or here
foo(); // maybe here, depending on what foo does

}

Java : Compile-Time Locks / Structure
The Java "synchronized" lock acquisition structure is formally

structured at compile time.
Structure

lock(x) {
aaa
bbb

}
vs. RT style (not Java)

{
lock(x);
aaa
bbb
unlock(x);

}
CT features

8

Can't mess up the balance -- exceptions, etc. -- always balance
Less flexible

1. Classic Critical Section Problem
class Foo {

int i;

void incr() {
i = i + 1;

}
}

2. Java Solution: synchronized
Compile-time

Part of the source code structure
Acquire the lock on the receiver

equivalent to synchronized(this)
Errors

Most common errors derive from loosing track of which lock has been
synchronized.

3. Synchronized code
Synch lock on the receiver

synchronized void incr() {
i = i +1;

}
Result

Acquires the lock on this -- any other code that uses that lock will
block while we're in this section.

The lock is part of the receiver object.

Common Synch Errors

1. Error - must volunteer to be
synchronized

void decr() {
i = i -1;

}
Only methods that are synchronized are locked out. In this case, decr()

can still get in while incr() holds the lock.

9

2. Error - static methods do not synch on
an instance

static void incrObj(Foo foo) {
foo.i = foo.i + 1;

}
Solution

Having a static method change the state of an object is weird, but if we
ignore that, the solution would be to block on the same lock as the
regular synchronized methods...

static void incrObj(Foo foo) {
synchronized(foo) {

foo.i = foo.i + 1;
}

}

3. Error - Shared Static
static int count;
synchronized binky() {

count = count + 1;
}

Problem
binky() will not be running concurrently against one object, but with

multiple objects, it could be running concurrently against multiple
objects.

a. synch(this) -- same problem
void binky() {

synchronized(this) {
count = count+1;

}
}

b. synch(lock) -- solution
Add a dedicated lock object used for count...
static int count;
static Object countLock = new Object();
void binky() {

synchronized(countLock) {
count = count + 1;

}
}

10

4. Error - Shared Object
int[] a; // suppose all Foo's share a pointer to one a obj
syncronized void binky() {

a[0] = a[0] + 1;
}

Solution
void binky() {

synchronized(a) {
a[0] = a[0] + 1;

}
}

5. Split Transaction Problem --
Too fine grain

Code
class Account {

int balance;

public synchronized int getBal() { return(balance); }
public synchronized void setBal(int val) {balance = val;}

}
Problem

Two threads could interleave their calls to get/set just so to get the
wrong answer.

The synch is at too fine grain -- the critical section is larger
This is tricky -- the programmer could think "I used synchronized

everywhere" so they think it's ok.
Solution

Move the synch out so it covers the whole transaction
public synchronized changeBal(int delta) {

int val = getBal();
val += delta;
setBal(val);

}

-or-

public synchronized changeBal(int delta) { balance += delta; }

