
CS193k, Stanford Handout #2
Spring, 2000-01 Nick Parlante

Swing 1

Introduction
Our first topic will be advanced use of MVC in Swing. We'll review

basic Swing very quickly, so we can get to the advanced parts.
If you are not familiar with Swing, see the Swing track in the Java

tutorial...
http://java.sun.com/docs/books/tutorial/uiswing/index.html

OOP/GUI Systems
CT hierarchy of library classes
RT system -- event dequeue

User event maps to Java message "notification" sent to the object
e.g. the "draw yourself " message paintComponent()

"Passive" style
Objects sit around waiting for the system to tell them something. They

react to each notification: click, draw, etc.

Java GUIs

The AWT/Peer Debacle
"Peer" system

Each Java AWT object, such as Button or Panel, on the Java side has a
"peer" written in C on the VM side. The AWT object and the peer
collectively provide the implementation. Each VM has its own peer
code particular to that vendor/OS.

Bug/Quirk Matching
Develop a client against the Microsoft AWT implementation. The client

code develops quirks that match the bugs/quirks in the Microsoft
AWT. The code then fails to work against, say, the Sun Solaris VM
with its quirks.

Flaw
Many separate implementations trying to implement from a common

set of docs does not work if the spec is complex. If the
implementations are to be truly compatible with each other, they
must be built from common source -- so called "bug for bug"
compatible.

The new Swing/JFC approach...
"Lightweight" Swing objects -- no native peers

2

Swing objects written entirely in Java
It's the same Java bytecode on Windows, Solaris, ...

Layout Manager Portability
Pluggable Look 'n' Feel
Listener Event Model
Serialized-GUI-Bean technology (Java 1.4)

JComponent
Drawable

The superclass of all drawable, on screen things
227 public methods

Go read through the method documentation page for JComponent
once (off the home page)

Its Abstraction
How the geometry works
How components relate to each other
When what happens

1. Geometry Rect (location + size)
2. Containment
3. Drawing
4. Event handling
Class Hierarchy

JComponent has two superclasses that are AWT classes -- (AWT)
Component: (AWT) Container: JComponent

There are few times the AWT classes, intrude, but mostly we'll try to
conceptually collapse everything down to JComponent.

Geometry Theory
Size + Loc

Own co-ord sys w/ origin (0,0) in the Upper Left
Extends out to getWidth() and getHeight()

Local Co-ord System
"local coordinate system" -- remains constant, even as you get moved

around.
You can always draw relative to your own local coordinate system.

PreferredSize
The layout manager determines our exact size. Use setPreferredSize()

to indicate your wishes to the layout manager.
Parent = our container
Layout Manager

Looks at the preferred size of everything, the size of the window, etc.
and arranges (size+loc) of everything as best it can.

setSize() no, setPreferredSize() yes

3

It is rarely the case that the size of component is set by client code that
calls setSize().

Send getWidth, getHeight(), getSize(), getLocation(), getBounds()
To see where you are and draw within that (0,0) out to getWidth()

getHeight()
You do not get to dictate your geometry -- the LayoutManager does

Geometry Methods
(Mostly inherited from Component)
Constructor

The initial component is size0 and has no parent
int getWidth(), getHeight()
Dimension getSize([Dimension]);

Like above, but get width/height in an object
int getX(), getY()

Get the location of the upper left of our coord system within our
container.

Location getLocation([Point])
As above, but in an object

get/set PreferredSize(Dimension)
Rectangle getBounds([Rectangle])

location and size all at once
boolean contains(x,y)
boolean contains(Point)
setBounds(Rectangle -or- x,y,w,h)

Do not call this -- the layout manager is responsible for establishing the
bounds

Likewise, do not call setSize()
getParent()

How To Draw
paintComponent(Graphics g)

Sent to the object when it should draw itself
Override to provide code for a component to draw itself
Call getWidth() etc. to see the current geometry -- how big you are
(0,0) is your upper-left corner -- draw yourself

Passive
Note: passive -- you don't demand to draw, you respond -- drawing

when the system says to draw
Best design: all drawing bottlenecks through paintComponent()

public void paintComponent(Graphics g) {
// super.paintComponent(g); // not necessary for simple cases

int width = getWidth();
int height = getHeight();

4

// draw a rect around the border of the component
g.drawRect(0, 0, width-1, height-1); // -1 since drawRect overhangs by one

}

Graphics
A drawing context passed to you -- send it drawing commands to do

drawing.
(0,0)

In the upper left hand corner
X extends to the right
Y extends down

g.drawRect(x, y, width, height)
Draw rect with its upper left at (x,y)
Extends past the given width and height by 1 on the right and bottom ,

so you frequently subtract one
g.fillRect(x, y, w, h)

Uses the current color, does not overhang like drawRect()
drawLine(x1, y1, x2, y2)
drawString(String, x, y)
g.setColor(Color)

JFrame
Window

Represents one window
container = frame.getContentPane()

Gets the "content" part of the window where things go
container.setLayoutManager(...)

Install a layout manger which will arrange the components in the
container.

container.add()
Add a component to the content.

frame.pack()
Size the frame depending, recursively, on the sizes of the things it

contains.
frame.setVisible(true)

Initially the frame is not visible -- setVisible(true) brings it on screen

Layout Manager Theory
Like HTML -- policy, not exact pixels
1. Don't set explicit (pixel) sizes for things
2. The layout managers knows the "intent" (policy) of the layout

5

e.g. vertical list
3. The layout manager applies the intent to figure the correct size

on the fly
Pro: the GUI can work, even though different platforms have

fonts with slightly different metrics
Pro: re-sizing works (the policy
Pro: internationalization
Con: new paradigm, can be unwieldy, get used to it

Flow Layout
Arranges components left-right, top-down like text.

Box Layout
Can create a horizontal or vertical box

Border Layout
Main content in the center

e.g. the spreadsheet cells
Decorate with 4 things around the outsize -- north, south, east,

west
e.g. the controls around the spreadsheet cells

Resizing changes the size of the center

FirstFrame Example

// FirstFrame.java
/*
 Demonstrates bringing up a frame with the various
 layout managers.
*/
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;

public class FirstFrame extends Object {

6

public static void main(String[] args) {
// 1. Frame with flow layout
JFrame frame = new JFrame("Frame 1");
JComponent container = (JComponent) frame.getContentPane();
container.setLayout(new FlowLayout());

container.add(new JLabel("Hello World"));
container.add(new JLabel("another label"));

frame.pack();
frame.setVisible(true);

// By default, the frame just hides -- the following
// actually deletes it on close...
// frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

// -----
// 2. Frame with box layout

JFrame frame2 = new JFrame("Frame 2");
JComponent container2 = (JComponent)frame2.getContentPane();

// The Box layout make a vertical arrangement
container2.setLayout(new BoxLayout(container2, BoxLayout.Y_AXIS));

// add a few components
container2.add(new JLabel("Homer"));
container2.add(new JLabel("Marge"));
container2.add(new JLabel("Lisa"));
container2.add(new JLabel("Bart"));
container2.add(new JLabel("Maggie"));

frame2.pack();
frame2.setVisible(true);

// ----
// 3. Frame with border layout
JFrame frame3 = new JFrame("Frame 3");
JComponent container3 = (JComponent)frame3.getContentPane();

// Border layout
// (the 6's are for inter-component spacing)
container3.setLayout(new BorderLayout(6, 6));

container3.add(new JLabel("North"), BorderLayout.NORTH);
container3.add(new JLabel("West"), BorderLayout.WEST);
container3.add(new JLabel("Center"), BorderLayout.CENTER);
container3.add(new JLabel("South"), BorderLayout.SOUTH);

// Create a little panel (box layout)
JPanel panel = new JPanel();
panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
panel.add(new JLabel("Klattu"));
panel.add(new JLabel("Barada"));
panel.add(new JLabel("Nickto"));

7

// Put it in the east
container3.add(panel, BorderLayout.EAST);

frame3.pack();
frame3.setVisible(true);

}
}

JComponent
(Details on the previous handout)

Drawable
Geometry
Containment
System arranges and tells to draw

Key Methods
Send to self:

setPreferredSize() -- inform the layout manager of your pref
getWidth()
getHeight()

Override
paintComponent() -- all drawing happens here

Graphics
setColor()
fillRect(x, y, width, height)
drawRect(x, y, width*, height*) -- draws one pixel too large in width

and height
drawString(str, x, y)

Key Points
1. Layout manager arranges geometry

Use setPreferredSize() to influence the layout manager
2. Subclass off JComponent
3. Override paintComponent()
4. Use the passed in Graphics object

paintComponent() Features...

1.Passive
Wait for system to tell you to draw
drawRect() debug -- put a call to g.drawRect() at the start of your

paintComponent() just too where things are.

8

2. Object state -> pixels, read only
Look a the state of the object, and draw the pixels that represent

that state. Do not change the state of the object.

Obect in memory -- has
assorted ivars: int, boolean
string, which collectively
define its current state. Some of
that state affects the appearance
on screen.

paintComponent()

3. Clipping
System sets a "clipping region" before sending

paintComponent(). By default, the clipping region is the
bounds of the component, so the component does not draw
outside its bounds.

Drawing outside the clipping region does not lay down any
pixels.

System uses this to optimize the drawing in cases we will see
later.

The component can be unaware of the clipping for basic uses --
e.g. g.drawRect() automatically only changes pixels inside the
clipping region.

4. float/int drawing
Suppose you want to draw 10, equally spaced vertical lines
NO:

int dh = width/10;
for (int i=0; i<10; i++) {

int x = dh*i;
g.drawSomething(x, ...

YES:
Do calculations with floats, convert to int only at the last step
double dh = ((double)width)/10;
for (int i=0; i<10; i++) {

int x = Math.round(dh*i);
g.drawSomething(x, ... // convert to int at the last step

9

5. getGraphics -- NO
Almost always incorrect to use this
Only use if the assignment handout specifically says to
Subverts the system/paintComponent paradigm

Repaint()

90% of drawing is automatic
90% of drawing is automatic, you don't do anything at all -- the

system notes these cases automatically and does the drawing...
Expose event-- something used to be covered, but now its not
Resizing
Scrolling

component.repaint() -- draw request
Tell the system that the given component needs to be redrawn

Asynchronous
Does not draw immediately
Marks the given component for future redraw (pretty soon --

fraction of a second)
The system calls paintComponent() on its schedule

"Up To Date" Repaint Model
Object State

Each object in memory has lots of state : strings, pointers, booleans...
Some of that state affects the way the object appears on screen.

Relevant Change
When state that affects the appearance is changed, a repaint() is

required.
Out of date

The change has made the on-screen representation out of date -- it is
showing the result of a paintComponent() with the old state.

e.g. Repaint Setter Style
boolean angry

Suppose the smiley face has an angry boolean.
paintComponent() looks at the value of angry and draws accordingly

10

public void paintComponent(Graphics g) {
super.paintComponent(g);

if (angry) g.setColor(Color.red);
g.drawRect(0, 0, getWidth()-1, getHeight()-1);

}

setAngry(boolean angry)
The setter does a repaint() since the angry state is relevant to the

appearance
{

this.angry = angry;
repaint();

}

Better
{

if (this.angry != angry) {
this.angry = angry;
repaint();

}
}

Work for Client NO /
Work for Utility YES

Some state is relevant to the appearance and some is not.
Do not make the client figure this out -- just hide the call to repaint() in

the appropriate setters.

Repaint Bugs
Tempting to sprinkle repaint() calls around -- don't be careless
What if the code calls repaint() in paintComponent()?

11

XComponent Example

12

// XComponent.java
/*
 Simple class that demonstrates basic drawing,
 using repaint, and layout managers.
*/
import java.awt.*;
import javax.swing.*;
import java.util.*;

import java.awt.event.*;

import com.sun.java.util.collections.*;

class XComponent extends JComponent {
private final static int MAX = 10;
private int count; // ranges 1..MAX

XComponent(int width, int height) {
super();
setPreferredSize(new Dimension(width, height));

count = 1;

// Create and register a mouse listener
addMouseListener(new MyMouseListener());

}

// This inner class gets mouse event notifications for us
class MyMouseListener extends MouseAdapter {

public void mousePressed(MouseEvent e) {
upCount();

 //System.out.println("pressed x:" + e.getX() + " y:" +e.getY());
}

}

/*
 Increase the count.
 Call repaint() to signal a redraw --
 classic example: state change -> repaint
*/
public void upCount() {

count++;
if (count>MAX) count=1;

repaint();
}

/*
 Set the count.
 Does not respect MAX.
*/
public void setCount(int count) {

this.count = count;
repaint();

13

}

/*
 Draw the series of 1..count rectangles
*/
public void paintComponent(Graphics g) {

//super.paintComponent(g); // not necessary

int width = getWidth();
int height = getHeight();

for (int i=0; i<count; i++) {
// 0/10 1/10 2/10 ...
int rx = (int) ((float)width*i/(2*count));
int ry = (int) ((float)height*i/(2*count));

// 5/5 4/5 3/5...
int rWidth = (int) ((float)width*(count-i))/count;
int rHeight = (int) ((float)height*(count-i))/count;

g.drawRect(rx, ry, rWidth-1, rHeight-1);
}

g.setColor(Color.red);
g.drawString(Integer.toString(count), 20, 20);

}

public static void main(String[] args) {
JFrame frame = new JFrame("XComponent");
JComponent container = (JComponent) frame.getContentPane();
container.setLayout(new BorderLayout());

// Put an XComponents in the NORTH and CENTER
container.add(new XComponent(100,100), BorderLayout.NORTH);
container.add(new XComponent(200, 200), BorderLayout.CENTER);

// Create a little panel (flow layout)
JPanel panel = new JPanel();
panel.add(new XComponent(50, 50));
panel.add(new XComponent(50, 50));

// put it in the SOUTH
container.add(panel, BorderLayout.SOUTH);

frame.pack();
frame.setVisible(true);

}
}

