CS5107 Handout 12
Spring 2002 April 8, 2002

Achieving Readability

This wonderful handout was lifted from Nick Parlante's CS107 handout stream.

A program is undoubtedly read many more times that it is written. A program must
strive to be readable, and not just to the programmer who wrote it. Any program
expresses an algorithm to the computer. A program is clear or "readable" if it also does a
good job of communicating that algorithm to a human.

Readability is vital for projects involving more than one person. It's also important when
the program is of sufficient size that you come across pieces of code you wrote, but
which you don't remember. It's a traumatic experience the first time it happens. A bug is
essentially a piece of code which does not say what the programmer intended. So
readable code is easier to debug since the discrepancy between the intention and the
code is easier to spot.

Documentation

Given that most programming languages are a rather cryptic means of communication,
an English description is often needed to understand what a program is trying to
accomplish or how it was designed. Comments can provide information which is
difficult or impossible to get from reading the code. Some examples of information
worth documenting;:

* General overview. What are the goals and requirements of this program? this
function?

e Data structures. How is data is stored? How is it ordered, searched, accessed?

* Design decisions. Why was a particular data structure or algorithm chosen? Were
other strategies were tried and rejected?

* Error handling. How are error conditions handled? What assumptions are made?
What happens if those assumptions are violated?

* Nitty-gritty code details. Comments are invaluable for explaining the inner
workings of particularly complicated (often labeled "clever") paths of the code.

* Planning for future. How might one might make modifications or extensions later?

* And much more... (This list is by no means exhaustive)

In a tale told by my office-mate, he once took a class at an un-named east-bay university
where the commenting seemed to be judged on bulk alone. In reaction, he wrote a
Pascal program which would go through a Pascal program and add comments. For each
function, it would add a large box of *'s surrounding a list of the parameters. Essentially
the program was able to produce comments about things which could be obviously
deduced from the code. The fluffy mounds of low-content comments generated by the
program were eaten up by the unimaginative grader.

The best commenting comes from giving types, variables, functions, etc. meaningful
names to begin with so the code where they appear doesn't need comments. Add in a
few comments where things still need to be explained and you're done. This is far
preferable to a large number of low-content comments.

Overview Comments

Every program, module, or class should begin with an overview comment. The
overview is the single most important comment in a program. It's the first thing that
anyone reading your code will read. The overview comment explains, in general terms,
what strategy the program uses to produce its output. The program header should lay
out a roadmap of how the algorithm works— pointing out the important routines and
discussing the data structures. The overview should mention the role of any other files
or modules which the program depends on. Essentially, the overview contains all the
information which is not specific or low-level enough to be in a function or method
comment, but which is helpful for understanding the module as a whole.

In the latter paragraphs of the overview, you might include the engineering rational for
the algorithm chosen, or discuss alternate approaches which might be better. The
overview can also introduce the programmer's opinions or suggestions. It's often
interesting to see the programmer's feelings on which parts of the program were the
hardest or most interesting, or which parts most need to be improved.

For coursework, the overview should also include uninteresting but vital information
like: your name, what class the program is for, your section, and when the program is
being handed in. In commercial code, the overview will also list, most recent first, all the
revisions made to the code with author and date.

Choosing Good Identifiers

The first step in documenting code is choosing meaningful names for things. This is
potentially the last step, since code with good identifiers will need little additional
commenting. For variables, types, and record field names the question is "What is it?"
For functions, the question is "What does it do?" A well-named variable or function helps
document all the code where it appears. By the way, there are approximately 230,000
words in the English Language— "temp" is only one of them, and not even a very
meaningful one.

Common Idioms for Variables

There are a couple variable naming idioms that are so common among programmers,
that even short names are meaningful, since they have been seen so often.

i, 3, k Integer loop counters.

n, len, length Integer number of elements in some sort of aggregation

X, Y Cartesian coordinates. May be integer or real.

head, current, tail Pointers used to iterate over lists.

Nouns for Variables and Types

The uses of the above are so common, that I don't mind their lack of content. However,
in all other cases, I prefer identifiers that mean something. Avoid content-less, terse, or
cryptically abbreviated variable names. Names like "a", "temp", "nh" may be quick to type,
but they're awful to read. Choose clear, descriptive labels: "average", "height", or
"numHospitals". If a variable contains a list of floats which represent the heights of all the
students, don't call it 1ist, and don't call it £1oats, call it heights. Plurals are good for
variables which contain many things. This applies to names for structure members as

well as variables.
Don't reiterate the data structure being used. e.g. 1ist, table, array.

Don't reiterate the types involved if you know more specifically what the value is.
e.g. number, string, floatValue, anything containing the word value or temp.

Do say what value is being stored. Use the most specific noun which is still accurate.
e.g. height, pixelCount, names. If you have a collection of floating point numbers,
but you don't know what they represent, then something less specific like f1loats
is ok.

Defining Constants and Macros

Avoid embedding magic numbers and string literals into the body of your code. Instead
you should #define a symbolic name to represent the value. This improves the
readability of the code and provides for localized editing. You only need change the
value in one place and all uses will refer to the newly updated value.

Names of #define-d constants should make it readily apparent how the constant will be
used. MaxNumber is a rather vague name: maximum number of what?
MaxNumberOfStudents is better, because it gives more information about how the
constant is used. You also may want to choose a capitalization scheme that identifies
macros as such (some programmers use all upper case e.g. BOARD_WIDTH).

Verbs for Function Names

Function names should clearly describe their behavior. Functions which perform actions
are best identified by verbs, e.g. Findsmallest or brawTriangle Predicate functions and
functions which return information about a property of an object should be named
accordingly: e.g. IsPrime, StringLength, AtEndOfLine. Again, you may want to choose a
capitalization scheme that helps make your function names readable and consistent
(perhaps capitalizing each new word or separating words with underbars).

Comments for Functions

The comments for a function or method need to address two different things:

1) What does it do? (Abstraction comments)

2) How does it do it? (Implementation comments)

The abstraction is of interest for someone who wants to use it. The implementation is of
interest to someone trying to modify or debug it. A function with a well-chosen name
and well-named parameters may not need any abstraction documentation. A routine
where the implementation is very simple may not need any implementation
documentation.

Abstraction Comments for Functions

Usually the comments in an interface (.h) file are abstraction comments: you are telling
the client how to use the functions. Abstraction documentation is like an owner's
manual for the function— what the function does and what it can and cannot tolerate as
input. An easy way to come up with a good abstraction comment is to look at the
parameters of the routine, and then explain what the routine does to them. You should
describe any special cases or error conditions the function handles (e.g. "...will abort if
divisor is 0", or "...returns the constant NOT_FOUND if the word doesn't exist") It is not
necessary or appropriate to go into the gory details of how the function is implemented.

Implementation Comments for Functions

Specifics on the inner workings of a function (algorithm choice, calculations, data
structures, etc.) should be included in the implementation comments in the
corresponding .c file, where your audience is a potential implementor who might extend
or re-write the function. Implementation commenting is part is the traditional
programmer-to-programmer documentation which describes how the code implements
the abstraction. Some programmers make a point of not letting any implementation-
oriented comments make their way into the .h files where they might be seen by a
client.

The following examples are meant to illustrate function documentation. They are not
necessarily a representation of how much you should comment every function. The
amount of commenting a function requires is related to its complexity and importance.
Some programs break down so nicely that no one function is very complex, and the
names of the functions document most of what's going on. Other programs have a
fundamental complexity which emerges in a few key functions. These functions deserve
a lot more commenting. Some people like to label the "abstraction" and
"implementation" documentation and write them as separate paragraphs. Some don't
use the labels and document the routine in a single paragraph which addresses both.
Some people prefer to defer more of the implementation discussion to inline comments.

5

Please use whatever style you are most comfortable with. Any reasonable, consistent
approach is acceptable.

void SortedListInsert(List list, Element elem);

No abstraction comment is really required— what the function does is apparent from its
name, assuming the function does not make any hidden assumptions about the list
parameter beyond those given in the program header about the use of the type List.

/*

* Implementation: This function recurs down LIST to find the right

* place to insert ELEM into increasing order. When the correct spot is
* found, a new LISTELEMENT is allocated, initialized, and inserted. The
* recursion has the general flow:

* 1) base: if LIST is empty, then insert at head

* 2) check: if ELEM is less or equal to the first list element, then
* insert at head

* 3) recur: otherwise recur on the rest of the list

* A while loop could be used for a little more efficiency, but it's messier.
*/

The comment is a general description of the flow and purpose of the body of code. The
comment takes advantage of the natural breakdown provided by the three cases of the
recursion. It doesn't get into the detail of individual lines— instead it outlines the general
flow. Almost all routines have some sort of natural decomposition into "cases" or
"phases" which can be a good starting point for the documentation. This might be a bit
much documentation for a program where you would expect the reader to know how
to do something as common as a recursive linked list insertion.

Relationship FindFirstRelationship(FamilyTree tree, Person male, Person female);

/
Abstraction: This function finds the first relationship between MALE and
FEMALE who are assumed to be distinct PERSONs, both of whom are in TREE
somewhere. The "first relationship" is defined to be the relationship
defined by the common ancestor lowest in the tree. The "lowest" part of
the restriction is important in the case that MALE and FEMALE are related
in several different ways.

Implementation: This function first uses the function SETOFANCESTORS to
return all ancestors of MALE and EVE. The Set Module function INTERSET

is used to find the set of common ancestors. A single pass of this locates
the person who is lowest in the tree. This is easy since each PERSON rec
contains that person's level in the tree. The AncestorToRelationship fn
is then used to compute the RELATIONSHIP. An alternate approach might be
to compute and compare MALE and FEMALE 's ancestors breadth first, one
level at a time, so as to find the lowest common ancestor more quickly and
potentially without having to look at most of the tree. The disadvantage
is that the cost at each level is much higher even if the number of levels
seen is less. Such an approach might make sense if MALE and FEMALE were
going to be closely related most of time, or if the tree were very large.

F ok X Kk ok ok X X ok k¥ X 3k F X X F F* X X F

6

The abstraction comment makes the assumptions about the input explicit, and gives a
good definition of the output. The implementation comment outlines the three logical
steps of the code. Each step may require all sorts of messy pointer manipulation and
special case testing which the comment does not get into. The comment sticks to the
point of what is going on at each step. It's fine to refer to other routines in the program
in the explanation. The digression into the alternate approach is reasonable because in
the case of this program, this function is the hardest, most important part of the whole
thing. From an engineering standpoint it is unclear which algorithm is better. The
comment shares what the programmer has thought of so far, which is sure to be useful
for the next programmer who has to come through and improve/repair the code. Such
a discussion of alternate approaches might reasonably occur in the program header
instead.

No Useless Comments!

A useless comment is worse than no comment at all— it still takes time to read and
distracts from the code without adding information. Remember that the audience for all
commenting is a literate programmer. Therefore you should not explain the workings of
the language or basic programming techniques. Useless overcommenting can actually
decrease the readability of your code, by creating muck for a reader to wade through.
For example, the comments

int counter; /* declare a counter variable */

i=1+1; /* add 1 to i */

while (index<length)... /* while the index is less than the length */
num = num + 3 - (num % 3); /* add 3 to num and subtract num mod 3 */

do not give any additional information that is not apparent in the code. Save your
breath for important higher-level comments! Only illuminate low-level details of your
implementation where the code is complex or unusual enough to warrant such
explanation A good rule of thumb is: explain what the code accomplishes rather than repeat
what the code says. If what the code accomplishes is obvious, then don't bother.

Inline Comments

Most of the rest of your comments will be "inline" comments. An inline comment
explains the function of some nearby code. The golden rule for inline comments is: do
not repeat what the code says. Code is a great vehicle for unambiguous, detail-oriented
information. Comments should fill in the broader sort of information that code does not
communicate.

If your identifiers are good, most lines will require no inline comments. An inline
comment is appropriate if the code is complex enough that a comment could explain
what is going on better than the code itself. Of the code snippet in the previous section,
only the last is complex enough that its function is not completely obvious after a single
reading. Complexity is probably the simplest reason a line might deserve a comment. A

7

line may also deserve a comment if it's important, unintuitive, dangerous, or just
interesting. Here's a more useful comment to replace the one from above:

num = num + 3 - (num % 3); /* increment num to the next multiple of 3 */

Another useful role for inline comments is to narrate the flow of a routine. An inline
comment might explain the role of a piece of code in terms of the overall strategy of the
routine. Inline comments can introduce a logical block in the code. Begin-End blocks and
the beginnings of loops are good spots for this sort of comment. As above, it's most
useful to describe what is accomplished by the code.

/*
* The following while loop locates the first vowel to occur
* twice in succession in the array

*/
Another useful type of comment will assert what must be true at certain point.

/*
* The file pointer must now be at the left hand side of a parenthesized
* expression.

*/
or

/*

* Because of the exit condition of the above loop, at least one of
* the child fields must be NULL at this point.

*/

Such a condition is called an "invariant". Invariants are a useful sort of mental checkpoint
to put in your code. You'll be less likely to get loop conditions, etc. wrong if you think
about and put in invariants as you are writing. One way to put invariants in your code
which help debugging and help documentation is to sprinkle your code with assert
statements. Asserts are an excellent habit.

assert(filePointer != NULL);

or

assert((childl != NULL) || (child2 != NULL));

Try not to allow inline comments to interfere visually with the code. Separate inline
comments from the code with whitespace. Either set them off to the right, or put them
on their own lines. In either case, it's visually helpful to align the left hand sides of the
comments in a region. Alternately, some of the issues addressed in inline comments can
be treated just as well in the implementation section of the function's comment.

Whether you prefer inline comments or header implementation comments is a matter of
personal choice.

Commenting Accuracy

Comments should correctly match the code; it's particularly unhelpful if the comment
says one thing but the code does another thing. It's easy for such inconsistencies to
creep in the course of developing and changing a function. Be careful to give your
comments a once-over at the end to make sure they are still accurate to the final version
of the program.

Attributions

All code copied from books, handouts or other sources, and any assistance received
from other students, TAs, fairy godmothers, etc. must be cited. We consider this an
important tenet of academic integrity, and as well it serves as useful information for the
next person to come along and work with this code. For example,

* Predicate Function: IsLeapYear

* IsLeapYear is adapted from Eric Roberts text,
* "The Art and Science of C", p. 200.

or

/*

* I received help designing the Battleship data structure, in particular,
* the idea for storing the ships in alphabetical order, from TA Albert Lin
*/

Formatting, Capitalization, and White Space

One last little note. In the same way that you are attuned to the aesthetics of a paper,
you should take care in the formatting and layout of your programs. The font should be
large enough to be easily readable. Use white space to separate functions from one
another. Properly indent the body of loops, if, and switch statements in order to
emphasis the nested structure of the code.

There are many different styles you could adopt for formatting your code (how many
spaces to indent for nested constructs, whether opening curly braces are at the end of
the line or on a line by themselves, etc.). Choose one that is comfortable for you and be
consistent!

Likewise, for capitalization schemes, choose a strategy and stick with it. Itend to
capitalize each word in the name of a function, start variables with lower case,
completely uppercase #define constants, and so on. This allows a reader to more quickly
determine which category a given identifier belongs to.

