CS5107 Handout 09
Spring 2002 April 8, 2002

Coding Standards

Handout written by Nick Parlante. Quite possibly the funniest handout ever.

Landmarks in Coding Quality

Let's honestly review the conceptual landmarks most programmers use when thinking
about how good their code is:

Publication Quality

Code suitable for publication in an article or textbook. Well-chosen algorithms and
data structures, thoughtful overview and inline comments, perfect formatting, all the
identifiers make sense, no coding hacks of even the slightest vulgarity. Something
you'd be proud for anyone else to see—you'd include it with your Stanford
application. By the way, no one writes code like this by accident. It has to be a
deliberate goal from the beginning.

Peer-Review Quality

Some companies have "peer code review" meetings every once in a while where a
programmer hands out printouts of whatever they've been working on and walk all
their peers through it to give the gist of what's going on. Most programmers dread
peer review because much of the code they whip out from day to day is a bit
embarrassing. Companies like it because it scares the programmers into avoiding
shamefully bad code. So peer review quality code tends to be mostly pretty good,
but with occasional lapses that can be rationalized to an understanding audience- "I
was going to decompose that, but I didn't have time." "oh yes, ha ha, on page 8 there
are some utterly awful looking functions I whipped out to fix that VM leaking bug
we had in May. I don't think it will port to the HP anyway. I think we're going to
make the summer intern re-write it." "I'm going to go through and write
documentation for that module and fix the variable names just as soon as I finish this
current project I'm just right on the verge of finishing. Real soon now. I promise.
Stop laughing at me!"

No-One-Is-Ever-Going-To-Look-At-This-Again Quality

Code that's being pounded out to solve a time-critical problem for the short term.
No overview comments. A lot of one-letter variable names. Indentation is probably
ok just out of habit. Instead of decomposing out common functions, the programmer
will just copy and paste chunks of code. Although this code was intended to be a
two-week hack, sometimes such code ends up working its way into production code
and plaguing programmers for generations to come.



Look-At-Me-I'm-So-Clever Quality

As with many other disciplines, some programmers can't resist the pleasure of noodling
around in the obscure parts of a language. This is fairly understandable really—
programming languages are arcane creatures, and there's something pleasing about
exploiting some obscure construct. But it's not a useful impulse really. It tends to go
something like this..."By eliminating all the function calls and using this other obscure
platform specific feature that no normal person has ever heard of, I was able to reduce
your whole program down to:

for(;P("\n"),R-;P("|"))for(e=C;e-;P("_"+(*u++/8)%2))P("| "+(*u/4)%2);

It's a full 24% faster, and it only took me a day." Efficiency is often cited. This impulse
seems to come up in meetings and lectures too.

What's Impressive

Just for reference, here's the official chart of what's impressive and what's not, as
published by the Opinionated Programmers Council headquartered in Geneva,
Switzerland.

* Code that works for all cases Impressive
* Code which was finished on time Impressive
* Code you didn't write, but got stuck with somehow, and
yet find easy to deal with and maintain Very Impressive

* Elegant, clean code with the occasional bit of inspired cleverness Impressive
* A complex and highly hacked-up and optimized computation

packaged in a nice, painless-to-use abstraction Impressive
* Nice-looking code which runs fast and ports with no work Impressive
* Code which works on many, but not all cases Not Impressive
* Nasty-looking code which is a pain to read and debug Not Impressive
* Thoughtless code which took little time to write Not Impressive
* Fast code which doesn't work quite right Not Impressive

Stanford CS Standards

In a Lord of the Flies, uncivilized incarnation, many programmers will slip into No-One-Is-
Ever-Going-To-Look-At-This-Again style code. Whatever takes the least time to type.
But that habit doesn't translate well in real world where programs need to work, be
maintained, etc. On the other end of the spectrum here at Stanford, all we do is write,
read, and think about code and how to write it better. Even if rarely attained, we should
at least hold out Publication Quality as the ideal to shoot for. Peer-Review quality might
still get an "A". Mediocre looking code that computes the right answer should get a "B".
And so on down the scale for code which doesn't quite work right.



3

The ideal for great looking code is quite high. Ask yourself: If you were to show your
code around, is there any part which would seem like it could stand some
improvement?

Write The High Quality Version First

For a hard programming project, it's tempting to use the following strategy: whip out a
low-quality solution with no decomposition and one-letter identifier names just to get
something working. Do most of the debugging work on the low quality model. If
there's time once everything is pretty much working, improve the decomposition,
identifier names, etc. to get the program up to the "A" level. This strategy has been tried
quite a bit, and it doesn't work. It's easier to write it at the ""A" level right from the
start. Well-decomposed, readable code is easier to test, will have fewer bugs, and what
bugs there are will be more isolated and easier to track down. Realistically, most of your
development time is not going to be consumed by typing in long identifier names or
writing two 15-line functions instead of a 30-line one.

One-Pass Coding

It's more work to retrofit a feature at some time after the original coding. The first time
you write something, you have all the details in your head. It's the easiest time to put in
comments, extra features, etc. Every time you revisit the code later for debugging or
revision, there's a period of re-learning while you remind yourself how the thing works.
This becomes a real problem when your programs get seriously large.

For most of your code, you'd like to never look at it again seriously once it's initially
written. Of course with the unpredictability of debugging and unplanned design
revisions, you will certainly revisit some parts of your program. But if you choose a
strategy of revising the whole thing later, then you will certainly need to relearn all of it,
and that's going to take much more time than putting in the extra effort to fix things up
on the first writing.



