
CS193j, Stanford Handout #32
Winter, 2001-02 Nick Parlante

Java Advanced
Today: How does repaint really work? Why does our animation look smooth?

How is java used currently, and how can it be deployed to regular users? How
might it be used in the future?

Inside Repaint v1
Animation steps
The drawing process will have to go through something like the following three

states...
1. Old appearance on screen
2. Erase back to background
3. Draw new appearance

May be several steps here as we composite together several components back
to front.

Problem: Blinking
Blinking

Get blinking if "erased" state is shown on screen
Shimmering

If the redraw is really fast, it may look more like a "shimmer" of vibration, but
it's still not good.

Solution : Double Buffering
Offscreen Buffer

Build a pixel buffer offscreen
1. Old appearance (as before)
2. Erase offscreen buffer
3. Draw new appearance to offscreen buffer

As before, there may be several steps here as we composite together several
components back to front.

4. CopyBits (aka "Blit")
Copy the pixels for the new appearance from the buffer onto the screen.
It looks smooth because the "erased" state is never on screen -- on screen we

move right from old to new.
Also, the CopyBits primitive is highly optimized.

 Swing
Swing does this automatically
JComponents draw to an offscreen buffer -- that's what the "Graphics g"

passed in points to
That's why shape move/resize looks smooth despite our simple drawing

strategy

2

Inside Repaint v2
Smart Repaint -- smaller region
component.repaint(rect) -- added rect argument in the co-ord system of the

component.
Do not request the whole bounds of the component, just a sub-rect of it
e.g. Moving a shape -- just redraw the old+new rects around the shape.

Smart repaint implementation
1. Start with a region to redraw, but now its smaller
2. Find intersection components (as before)
3. Allocate an offscreen bitmap -- but exactly the size of the (small) update region.
4. Set up the origin and clip of Graphics g, to point to the small buffer.
5. Call the drawing recursion as usual, the components draw into the small

offscreen buffer. Drawing outside the buffer is clipped, but the components
don't need to be aware of that.

6. CopyBits the small buffer to the screen when done -- this can be much faster if
the buffer is much smaller than the whole bounds. The number of bytes to
move is just a lot smaller.

Conclusion
Using smart repaint(rect) to redraw just an area of the component can be much

faster.
The smaller region requires less drawing -- some speedup
The smaller region means that the offscreen bitmap can be smaller and there are

fewer pixels to copy -- this is a large part of the speedup.
The client components can be unaware of the sophisticated drawing that's going

on under the hood. They just respond to paintComponent().

Repaint Examples
repaint(x, y, width, height)
Call to redraw just a sub-rectangle of a component
The system is smart about using an offscreen buffer of just the size needed --

great potential speedup.
Theme: with a little cooperation from the client side, the JComponent system can

do quite sophisticated drawing.

Example 1
Suppose there's a circle and a rectangle. We're changing the circle so it is filled

with a pattern.

3

1. State change -> Repaint -> Update
region
Change the state of the circle to pattern=true.
Repaint just around the circle.
This adds the square shown to the update region

2. Offscreen Drawing
A little later, the draw thread notices the non-empty update region
Draw thread creates an offscreen buffer just the size of the update region.
Notice, for example, how many fewer pixels need to be erased compared to

redrawing the whole component -- potentially huge speedup.
Clipping is set around the buffer, so drawing outside of there has no effect (and

is fast).
The draw thread sends paintComponent() to the components to draw themselves

back to front. Only the parts that intersect the update region actually draw.

4

3. Copy Bits
Once everything has drawn the buffer, the draw thread copies the buffer back

onscreen with one fast copybits operation ("blit") and deletes the buffer.

Example #2
 Basically the same thing, but moving the circle instead of filling it with a pattern.

Moving something requires two repaints -- one for its old rectangle and one for
its new rectangle.

The update region is smart about "unioning" the two rectangles together to make
one enclosing rectangle.

1. Repaint x 2
Move the circle down
Repaint its old and new rectangles

5

2. Offscreen Drawing

3. Copybits

6

Java Niches
Java Niches -- Server vs. Client
Niche: server-side internet apps -- Java is very popular here already -- portable,

secure, programmer efficient -- show well in this niche
"Business logic" applications using Java and its JDBC library to connect to the

database and fiddle around with the data. Note: possibly no GUI, just
strings, ints, dates, etc.

Niche: "custom" applications
A custom GUI application that is part of a larger custom system -- e.g. the

"View Order Status" application used by the foo.com customer service
people

Possible niche: Client side java
Possible niche: Small devices -- palm pilots, TVs, ...

HTML Forms Are A Hack
Currently,.almost all net services, (e.g. Amazon, yahoo email, ...) are presented

through HTML forms.
This has the huge advantage of compatibility -- it works with most any client OS,

and such platform-independent compatibility has been the key ingredient in
the growth of the internet.

Note that the Internet did not develop exchanging proprietary .doc files, even
though 90% of users have MS Word -- the Internet explosion really kicked
in with 100% portable formats such as HTTP and HTML.

However, HTML forms do not present a great interface -- the user sees a state,
they can click a button, there is a 2 second delay, and they see the next state.

Contrast this to a real GUI program -- you move the mouse or scroll a list, and
1/100th a of a second later you get the visual feedback.

We are so used to HTML forms, we have grown blind to how lame they are for
constructing a good UI.

Future: Real Client GUI
Imagine Amazon client program
Runs on the client side
Communicates back to the server as needed
Presents a responsive GUI to the client -- lists, text fields, selections etc.
Still limited by networking speed, but can be far better than the HTML form

Applets
Run in a security "sandbox" in the browser -- prevent the applet from touching

the local file system, etc.
Applets have not caught on too much
Performance problems
Running inside the browser created inevitable reliability problems

7

Microsoft is not, shall we say, enthusiastic about making applets work
correctly in the browser.

Original applets used AWT
With the latest Java 1.2 or later installed on a machine, the Swing JApplet may be

used -- the browser must be set up to support Java.
Sun's "java plugin" is a browser plugin that provides applet support.

Jar files
.jar file is an archive file that contains directories of .class files + misc images,

sounds, and other support files.
Double click on the .jar runs the application (works on windows, solaris, and

MacOSX)
Users need to install Java first -- the Java Runtime Environment from Sun (JRE)
Code does not run in a "sandbox"
It's easy to package your java application into a .jar file -- then you can distribute

it as simply as a PDF. Users just download the file and double click it.

Java Web Start
Replacement for applets and jar files
http://java.sun.com/products/javawebstart/
Client installs the JWS loader on their machine once (like installing Acrobat)
Package app in a .jar
Write a .jnlp file that describes the package -- where's one I made for a

DiceMachine class in a DiceMachine.jar file (made by tweaking the Sun
sample)...

<?xml version="1.0" encoding="utf-8"?>
 <!-- JNLP File for SwingSet2 Demo Application -->
 <jnlp
 spec="1.0+"
 codebase="http://www.stanford.edu/~nick/dice/"
 href="dice.jnlp">
 <information>
 <title>Dice Application</title>
 <vendor>Sun Microsystems, Inc.</vendor>
 <homepage href="docs/help.html"/>
 <description>SwingSet2 Demo Application</description>
 <description kind="short">A demo of the capabilities of the Swing Graphical
User Interface.</description>

 <!-- <icon href="images/swingset2.jpg"/> -->
 <offline-allowed/>
 </information>
 <security>
<!-- we are not signed, so we don't request all perms <all-permissions/> -->
 </security>
 <resources>
 <j2se version="1.2"/>
 <jar href="DiceMachine.jar"/>
 </resources>
 <application-desc main-class="DiceMachine"/>
 </jnlp>

8

Unsigned code runs in a sandbox
The client just downloads the .jnlp file which points to enough info for the client

to download and run the java code.
Can run with or without a net connection once downloaded.
Can check for updates automatically
The point: You send someone just a URL, and they can just click it to run the

program on their machine. Updates can happen automatically.

Will JWS Catch On?
Like Flash catching on -- chicken-and-egg problem that works best if many

clients have it pre-installed.
This will be hard since Microsoft controls the dominant OS and browser, and

Microsoft hates Java
Enterprises love it internally -- easy way to distribute and update little custom

apps -- just send out the URL

