
CS193j, Stanford Handout #31
Winter, 2001-02 Nick Parlante

Java Performance

JITs
Just In Time compiler
Translate the bytecode into native code -- do a hasty, low quality job of it. Big

improvement, but uses lots of memory

HotSpot
Watch the code, and figure out what to optimized.
Compile a small amount of the code aggressively.
Do lots of inlining -- enables all sorts of other optimizations

"Plumbing Effect" -- libraries
Much CPU time is spent in library activity such as new, JPEG decompress, file

read...
Those libraries may be implemented natively
The Java is left as the plumbing that wires things together, so its speed is less

important

Future
Cache the compiled version
bytecode is just for distribution, remote RMI, etc.

Optimization Quotes
 Rules of Optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only): Don't do it yet.
 - M.A. Jackson

 "More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
stupidity." - W.A. Wulf

 "We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil." - Donald Knuth

Optimization 101
Reality

Hard to predict where the bottlenecks are

2

It's not so hard to use tools to measure what the code is doing once it is
written.

Therefore, write the code you way you want to be correct and finished first,
then worry about optimization.

"Premature Optimization" = evil
Classic advice from Don Knuth
Write the code to be straightforward and correct first
Maybe it's fast enough already
If not, measure to find the bottleneck
Focus optimization there. Use CS161 type optimal algorithms + use language

techniques as below
Data Structures

Your data structure will have a profound influence on performance.
This is one bit of "early" design where you might want to think about

performance a little.
The choice of data structure (what you store, who has pointers to whom) can

be very constraining on the possible algorithms later on.
Proportionality To Caller

Suppose we write a foo() utility in a way which is easy to code but naive -- it
currently costs 1 millisecond, but could be sped up drastically. foo() is only
called in one place by the bar() method. (If foo() is called multiple times, just
add them all up to get the total foo() cost.)

How do you know if this matters?
The key question: how costly is bar()? If bar() takes 20 milliseconds, then

foo() just doesn't matter. The smart strategy is to leave foo() in it's
slow/naive/correct implementation -- find something else to fix.

If bar() takes 2 milliseconds, then foo() makes a huge difference and should be
fixed.

1-1 User Event Rule
If something happens some fixed number of times like 1 or 3, for each single

user event, such as a button push, then performance is not too important for
that operation.

Watch for operations that happen 100's or thousands of times in relation to
each user event.

User events happen very slowly from the computer's point of view.
e.g. use reflection to do a single method lookup when a button is pressed.

Reflection is slow, but the true bottleneck will certainly be some other
operation that happens many times per press.

Algorithm Optimization
Pixels Expensive

Laying down pixels is costly
It's worth having an algorithm that is smart enough to only draw what's

necessary
Disk Expensive

Getting bytes of the disk or network is expensive
Computing Again and Again

3

Sometimes all the fancy abstraction and encapsulation can create an
algorithm that's pretty stupid: compute foo(x) add it to y. Compute foo(x)
again add it to z...

You can use encapsulation here where the client is unaware that the second
call to getFoo() is just returning a cached answer.

Java Tips
Using the right data structure and algorithm is the most important. After that we

have language feature rules...

1. 1-10-1000 Rule
assignment (=) : 1 unit of time
method call : 10 units of time

similar overhead to C
new object or array : 1000 units of time

Newer VMs are making this cheaper, but it's still much more expensive than
other operations

Hotspot has made major advances in speeding up "new" -- the new ratio may be
more like 1-10-100, but the basic trend of avoiding "new" os still true.

However, do not try to maintain your own large "free" list of objects for re-use. If
the list is large, it interferes with GC. Changing the algorithm to avoid 'new' or
keeping a small free-list are still good speedups.

2. int getWidth() vs.
Dimension getSize()
getSize() requires a heap allocated object
getWidth() and getHeight() may just be inlined to move the two ints right into

the local vars of the caller code.
With HotSpot, supposedly short lived objects have been implemented to much

faster, so this may be less important in the future.

3. static buffer -- "singleton"
Suppose you need some temporary array in a method.
Instead of calling new char[1000] in every call...
1. allocate a static array just once, and use it every time
2. (better) declare a static array, and allocate it the first time the method is called

by checking if it's null -- avoids creating more load-time cost
Note: be careful if the method is executed by multiple threads
Disadvantage: we're taking up 1000 bytes all the time, even when the method is

not running.
Could use a "weak reference" to unload the buffer when unused.

4. Clever swapping
108 Tetris board implementation
Allocate two copies of the "board" data structure.
Swap between the two implement the undo feature

4

Point: rotate between a fixed number of objects, to avoid ever needing to call new
Cache

In this case, the use of cache memory is better as well -- the two copies get
"hot" and we just switch between them.

5. Locals Faster Than IVars
Local (stack) variables are faster than member variables of any object (the

receiver or some other object). Locals are also easier for the optimizer to work
with for a variety of optimizations.

A .width variable in this object or in some other object pointer is slower than a
local stack variable.

Inside loops, pull needed values into local variables (int i;).
Suppose we are in a for loop...
1. Slow -- message send

...i < piece.getWidth()
2. Medium -- instance variable -- with a good JIT, this case and (1) above are

essentially the same.
...i < piece.width
-or-
...i< width (suppose the code is executing against the receiver)

3. Fast -- pull the state into a local (stack) variable, and then use it. This allows the
implementation to pull the value into a native register. If the value is in an ivar,
the runtime needs to retrieve it from memory every time it is used. It's hard for
the runtime to deduce that .width is not being changed, so it has to reload it
from memory. Whereas it's easy for it to deduce that localWidth is not being
changed, so it can just put it in a register and use that value the whole time.
(Note theme for the future: we're sensitive to generating memory traffic.)

int localWidth = piece.getWidth(); // or width if we are the receiver
... i<localWidth...

-or-

// make it even more clear for the JIT...
final int localWidth = piece.getWidth();

6. Avoid Synchronized
Synchronized has a moderate runtime cost -- although this has been reduced as

of Java 2
Can have synch and unsynch versions of the same method, and switch between

the two based on some other flag.
Use "immutable" (unchangeable) objects to finesse synchronization problems.

7. StringBuffer
Use StringBuffer for multiple append operations -- change to String only once it's

not going to change.
Automatic

This case the compiler optimizes for you -- appending together a bunch of
strings at one moment into one immutable string.

5

String s = "a string" + foo.toString() + "some other string";

No
String record; // ivar

void transaction(String id) {
record = record + " " + id; // NO, chews through memory

}

YES
StringBuffer record;
void transaction(String id) {

record.append(" ");
record.append(id); + id;

}

8 Don't Parse
Obvious but slow strategy: read in XML, ASCII, etc. -- build big data structure
Fast: read it into memory, but leave it as just chars. Do the search, etc. in the

chars -- just parse/build the sub-part you need on the fly.

9. Avoid Weird Code
The whole suite of JVM optimizations added over time will be oriented towards

common looking code -- write your code in the most obvious, common way,
not some weird way. Ironically, weird code often gets written in the pursuit of
optimization.

e.g. the write obvious form: for (int i = 0; i<bound; i++) {...}
Also, realize that obvious method implementations like getWidth()

{return(width);} will certainly be targeted by HotSpot, so don't worry about the
method overhead.

10. Don't Use Vector
It's too synchronized, use the new Collections ArrayList instead.
If you can get away with a plain array, even better -- that's the fastest

11. Threading
Use separate threads so the GUI remains responsive. This "feels" fast. (snappy)
Divide the problem in to sub-problems that can be performed by multiple

threads simultaneously -- a performance win on multiple processors
This is hard, and you tend to end up being limited by system memory

bandwidth
Photoshop does this
This may be the performance technique of the future -- explicit parallelism in

the software

6

12. Thread -- updating GUI
As your threads do things, have them update the GUI now and then with

progress feedback. This "feels" faster too.

13. Use final for Methods/Classes
JVM optimizers, and hot spot in particular, make aggressive use of inlining --

pasting called code into the caller code.
Inlining enables many other optimizations.
Pro: "final" is a huge aid in enabling inlining
As Hotspot gets smarter, it can figure things out without "final", but it's nice to

help it out.
Con: subclasses can no longer override your method. If you're just compiling all

of your own code together, then it's no great loss.

Not Inlined

A() {

B() {

C() {

Inlined
A() {

Advantages
Data Flow

Values in A() are passed to parameters in B(), passed to C(), where they are
used.

Now, the flow of that value through the whole A/B/C sequence can be
analyzed -- the value can just live in one variable/register for the whole
computation

7

This saves on memory traffic, which is just what we need
Other Optimizations

Suffice it to say, many other optimizations become possible in the "collapsed"
inlined form

14. Think About Memory Traffic
Old: CPU bound

Think about how many operations you do.
New: Memory bound

CPU operations are getting cheaper all the time as the CPU gets faster than
the memory system.

Think about how much "traffic" your algorithm must read and write. Once it's
in the cache, it's cheap, so reading the same things multiple times is not so
bad. Reading consecutive addresses is not so bad.

Linked List Example
What is the cost of iterating through all the elements of a linked list?
Need to load each linked list element: data + next field
Bad: the next field itself is just added overhead
Bad: the next linked list element will somewhere else in memory. Cache systems

do best when you accessing contiguous stretches of memory.

"Sparse" ChunkList Example
Could have a "Sparse" ChunkList implementation where the elements in each

Chunk were set to null are marked as deleted by a separate boolean array.
Think of this strategy in terms of memory use:
Iterating through the chunk will now need to "pull in" the boolean array and all

of the data array, including the unused slots.
The point: think of an algorithm in terms of the memory fooprint it pulls from

memory to the L1 cache.

15. Null out unused ivar pointers
If you have an ivar pointer that you are done using, set it to null.
This can help the GC system out a little -- making things garbage quicker, and

shrinking the size of the pointer-traversal-tree.
This is not an important optimization, and in rare cases, it could decrease

performance slightly since it generates memory traffic.
In the future, I suspect that optimizations will depend on understanding and

facilitating the GC system which is an actively changing part of current JVMs.

