CS193j, Stanford Handout #22
Winter, 2001-02 Nick Parlante

Threading 4

Co-operation

Synchronization is the first order problem with concurrency. The second
problem is cooperation -- getting multiple threads to exchange information.

Checking condition under lock

Suppose you want to execute the statment "if (len >0) len++;" but other threads
also operate on len.

Acquire the lock first, then look at len -- otherwise some other thread may change
len in between the test and the len++

Do operations with the lock so the data is not changing out from under you --
this is just a basic truism of threads that read and write shared data.

wait() and notify()

Every Object has a wait/notify queue

You must have that object's lock first before doing any operation on the queue
(the queue is like "len" in the above example)

Use the wait/notify queue coordinate the actions of threads -- get them to
cooperate, signal each other

walit()

obj.wait();

Send to any object -- wait on its queue

"Suspend" on that object's queue -- efficient blocking

Must first have that object's lock (or get a runtime error)

The waiting thread releases that object's lock (but not other held locks)
interrupt() will pop the thread out of wait()

notif
obj.notify();
Send to any object -- notifies waiters on that object's queue
The sender must first have the object lock
A random waiting thread will get woken out of its wait() when the sender
releases the lock. Not necessarily FIFO. Not right away.
The wait will re-acquire the lock before resuming
"dropped" notify
if there are no waiting threads, the notify does nothing
wait()/notify() does not count up and down to balance things -- you need to
build a Semaphore for that feature
variant: notifyAll() notifies all the waiting threads, not just a single one

barging / Check again

When coming out of a wait(), check for the desired condition again -- it may have
become false again in between when the notify happened and when the
wait/return happened.

while

Essentially, the wait is always done with a while loop, not an if statement.

1. AddRemove

Producer/ Consuner problemw th wait/notify
This code works correctly.

-"len" represents the number of elenents in sone inmaginary array
-add() adds an elenment to the end of the array. Add() never bl ocks --
we assune there's enough space in the array.

-renmove() renoves an elenment, but can only finish if there

is an element to be renoved. If there is no el enent, renove()

waits for one to be avail abl e.

Strat egy:
- The AddRenpve object is the comon object between the threads --
they use its lock and its wait/notify queue.
-add() does a notify() when it adds an el erment
-renove() does a wait() if there are no el enents. Eventually,
an add() thread will put an element in and do a notify()
-Each adder adds 10 tines, and each renover renoves 10 tines,
so it balances in the end.
*/
cl ass AddRemove {
int len = 0; /1 the nunmber of elenments in the array
final int MAX = 10;

public synchronized void add() {
| en++;
Systemout.printin("Add elem"” + (len-1));
notify();

public synchronized void renove() {
/1 If there is no elenent available, we wait.
/1 We must check the condition again com ng out
/1 of the wait because of "barging" (use while instead of if)
while (len == 0) {
try{ wait();} catch (InterruptedException ignored) {}

/1 At this point, we have the | ock and | en>0
Systemout.println("Renove elem" + (len-1));
I en--;

private class Adder extends Thread {
public void run() {
for (int i =0; i< MAX, i++) {
add() ;
yield(); // this just gets the threads to switch around nore,
/1 so the output is a little nore interesting

}

private class Renmpbver extends Thread {
public void run() {
for (int i =0; i< MA i++) {
renove();
yield();

System out. println("done");

}
public void demo() {

/1 NMake two "addi ng" threads
Thread al = new Adder();
Thread a2 = new Adder();

/1 NMake two "removing" threads
Thread r1 new Renover () ;
Thread r2 new Renover ();

/1 start themup (any order woul d work)
al.start();
a2.start();
ri.start();
r2.start();

/*

out put
Add elem O
Add elem 1
Renmove elem 1
Add elem 1
Add el em 2
Add el em 3
Renpve el em 3
Renpve el em 2
Add el em 2
Add el em 3
Renmove el em 3
Renpve el em 2
Add el em 2

Renmove el em 3
Renove el em 2
done

Renpve elem 1
Renpve el em O

done
*/

}

public static void main(String args[]) {
new AddRenove().deno();
}

}
2. WaitDemo

/**

Denonstrates the "dropped notify" problem
Have one thread generate 10 notifies for use by another thread.
Does not work because of the "dropped notify" problem
*/
cl ass WaitDeno {
/1 The shared point of contact between the two
hj ect shared = new Object();

/1 Collect 10 notifications on the shared object
cl ass Waiter extends Thread {
public void run() {
for (int i = 0; i<10; i++) {
try {
synchroni zed(shared) {
shared. wait();

}
} catch (InterruptedException ingored) {}
Systemout.println("Waiter done"); [// it never gets to this line

}

/1 Do 10 notifications on the shared object
class Notifier extends Thread {
public void run() {
for (int i = 0; i<10; i++) {
synchroni zed(shared) {
shared. notify();
}
}

Systemout.println("Notifier done");

public void demo() {
new Waiter().start();
new Notifier().start();

}

public static void main(String[] args) {
new Wi t Deno() . denmo();
}

