
CS193j, Stanford Handout #22
Winter, 2001-02 Nick Parlante

Threading 4
Co-operation
Synchronization is the first order problem with concurrency. The second

problem is cooperation -- getting multiple threads to exchange information.

Checking condition under lock
Suppose you want to execute the statment "if (len >0) len++;" but other threads

also operate on len.
Acquire the lock first, then look at len -- otherwise some other thread may change

len in between the test and the len++
Do operations with the lock so the data is not changing out from under you --

this is just a basic truism of threads that read and write shared data.

wait() and notify()
Every Object has a wait/notify queue
You must have that object's lock first before doing any operation on the queue

(the queue is like "len" in the above example)
Use the wait/notify queue coordinate the actions of threads -- get them to

cooperate, signal each other

wait()
obj.wait();
Send to any object -- wait on its queue
"Suspend" on that object's queue -- efficient blocking
Must first have that object's lock (or get a runtime error)
The waiting thread releases that object's lock (but not other held locks)
interrupt() will pop the thread out of wait()

notify
obj.notify();
Send to any object -- notifies waiters on that object's queue
The sender must first have the object lock
A random waiting thread will get woken out of its wait() when the sender

releases the lock. Not necessarily FIFO. Not right away.
The wait will re-acquire the lock before resuming
"dropped" notify

if there are no waiting threads, the notify does nothing
wait()/notify() does not count up and down to balance things -- you need to

build a Semaphore for that feature
variant: notifyAll() notifies all the waiting threads, not just a single one

2

barging / Check again
When coming out of a wait(), check for the desired condition again -- it may have

become false again in between when the notify happened and when the
wait/return happened.

while
Essentially, the wait is always done with a while loop, not an if statement.

1. AddRemove
/*
 Producer/Consumer problem with wait/notify
 This code works correctly.

 -"len" represents the number of elements in some imaginary array
 -add() adds an element to the end of the array. Add() never blocks --
 we assume there's enough space in the array.
 -remove() removes an element, but can only finish if there
 is an element to be removed. If there is no element, remove()
 waits for one to be available.

 Strategy:
 -The AddRemove object is the common object between the threads --
 they use its lock and its wait/notify queue.
 -add() does a notify() when it adds an element
 -remove() does a wait() if there are no elements. Eventually,
 an add() thread will put an element in and do a notify()
 -Each adder adds 10 times, and each remover removes 10 times,
 so it balances in the end.
*/
class AddRemove {

int len = 0; // the number of elements in the array
final int MAX = 10;

public synchronized void add() {
len++;
System.out.println("Add elem " + (len-1));
notify();

}

public synchronized void remove() {
// If there is no element available, we wait.
// We must check the condition again coming out
// of the wait because of "barging" (use while instead of if)
while (len == 0) {

try{ wait();} catch (InterruptedException ignored) {}
}
// At this point, we have the lock and len>0
System.out.println("Remove elem " + (len-1));
len--;

}

3

private class Adder extends Thread {
public void run() {

for (int i = 0; i< MAX; i++) {
add();
yield(); // this just gets the threads to switch around more,

// so the output is a little more interesting
}

}
}

private class Remover extends Thread {
public void run() {

for (int i = 0; i< MAX; i++) {
remove();
yield();

}
System.out.println("done");

}
}

public void demo() {

// Make two "adding" threads
Thread a1 = new Adder();
Thread a2 = new Adder();

// Make two "removing" threads
Thread r1 = new Remover();
Thread r2 = new Remover();

// start them up (any order would work)
a1.start();
a2.start();
r1.start();
r2.start();

/*
output

Add elem 0
Add elem 1
Remove elem 1
Add elem 1
Add elem 2
Add elem 3
Remove elem 3
Remove elem 2
Add elem 2
Add elem 3
Remove elem 3
Remove elem 2
Add elem 2
...
Remove elem 3
Remove elem 2
done
Remove elem 1
Remove elem 0

4

done
*/

}

public static void main(String args[]) {
new AddRemove().demo();

}
}

2. WaitDemo
/**
 Demonstrates the "dropped notify" problem.
 Have one thread generate 10 notifies for use by another thread.
 Does not work because of the "dropped notify" problem.
*/
class WaitDemo {

// The shared point of contact between the two
Object shared = new Object();

// Collect 10 notifications on the shared object
class Waiter extends Thread {

public void run() {
for (int i = 0; i<10; i++) {

try {
synchronized(shared) {

shared.wait();
}

} catch (InterruptedException ingored) {}
}
System.out.println("Waiter done"); // it never gets to this line

}
}

// Do 10 notifications on the shared object
class Notifier extends Thread {

public void run() {
for (int i = 0; i<10; i++) {

synchronized(shared) {
shared.notify();

}
}
System.out.println("Notifier done");

}
}

public void demo() {
new Waiter().start();
new Notifier().start();

}

public static void main(String[] args) {
new WaitDemo().demo();

}
}

