
CS108, Stanford Handout #20
Winter, 2001-02 Nick Parlante

Threading 2
From Previous Handout
Threads vs. Processes
3 reasons to use threads
Thread class
Using: new, start(), run(), join()
Race condition / critical section
Reader/writer writer/writer conflicts
Synchronized keyword -- object lock

Current Thread
When have a sequence of statements

int i =7;
while (i<10) {

foo.a();
...

}
For a sequence of statements to execute, there must be a thread that has been

called to execute them -- the "current running thread".
A message send, in essence, transfers the current running thread temporarily to

go execute a method against the receiver.

static void main(String[] args)
A Java program begins with a thread executing main(), and that one thread

executes the whole program.
We will see how to create and run other threads which will run concurrently.

2

Current Thread Picture

void a() {
 ...
 ...
}

ivar

ivar

thread run {
 ...
 ...
 foo.a();
 ...
 ...
 ...
}

Thread is executing statements. On
message send, goes over and executes
against the receiver.

void b() {
 ...
 ...
}

foo object

 Basic Synchronization
(See previous handout)

3

Synchronization Code Issues
1. Unsynchronized methods -- danger
public void inc2() { // note: not synchronized

a++;
}

inc2() is not declared synchronized, so it does not obey the lock. inc2() could
execute at the same time as inc(), causing a writer/writer conflict.

A method must volunteer to obey the lock with the synchronized keyword. If it
makes sense for one method to be synchronized, probably they all should be.

synch inc() {
 --
 --
}

ivar

ivar

thread run {
 --
 --
}

synchronized method --
acquire object lock

thread run {
 --
 --
}

object lock

inc2() {
 --
 --
}

inc2() is not synchronized,
therefore a thread can go
right in, ignoring the
object lock. This will
probably cause concurrency
problems with the inc()
code as both inc() and
inc2() use the ivars. Most
likely, inc2() should be
synchronized.

2. Multiple acquisition -- ok
A thread can acquire the same lock multiple times -- works fine.
Put another way: a thread does not block waiting for itself.
e.g. inc() could call sum(), and it will work out right -- the lock will be released

only when inc() finally exits.

3. Exceptions -- lock release ok
A thread releases its locks as it returns from methods, no matter how. In

particular, an exception terminating the method will release the locks correctly.
It's nice to have support for this sort of detail built in to the system at a low level.

4

Concurrent Style
Deliberate Design

 By default, ignore concurrency issues.
Like subclassing, support for concurrency should be deliberately added to a class

if it is needed. Adding support for concurrency is not a trivial little operation.

Design for Concurrency
Does the pattern of locks allow multiple threads to get useful work done at the

same time?
There will be some moments when threads must wait for each other, but ideally,

much of the time they can each proceed independently.
If the threads must "take turns" -- only one getting work done at a time -- that's a

bad sign
Typical good design

Each thread checks a Foo object out from the foo storage (locked, one at a
time). However, once the thread has the foo object,, it can operate on it
independently. Another lock is required to for the (fast) check-in operation
to merge the results back in to the shared storage.

Typical bad design
Each thread checks a foo object out from the foo storage, and continues to

hold the foo storage lock (or some other globally needed lock) while
operating on the foo object. Essentially, only one thread can get work done
at a time.

Synchronize Transactions
Databases have an idea of a "transaction" -- a change that happens in full or is

"rolled back" to not have happened at all.
Leave in good state

Think of your messages that way. A method gets the lock, makes all its
changes (with sole possession of the lock), releases the lock leaving the
object fully in the new state. Don't release the lock when the object is
partially in the new state.

Don't worry about order
If the above is true, you don't have to worry about the order the methods

happened to acquire the lock.

Split-Transaction Problems
Suppose we have an Account object that responds to getBal() and setBal(), and

these are synchronized.
class Account {

int balance;

public synchronized int getBal() { return(balance); }
public synchronized void setBal(int val) {balance = val;}

}

5

Problem
Two threads could interleave their calls to get/set in a way to get the wrong

answer.
The synch is at too fine grain -- the critical section is larger
This is tricky -- the programmer could think "I used synchronized

everywhere" so they think it's ok.
Solution

Move the synch out so it covers the whole transaction
public synchronized changeBal(int delta) {

balance += delta;
}

Note: For HW4a, there is a sort of split transaction in the time between the call to
withdraw() and deposit(), but I'm allowing it for that case.

Get In and Get Out
It's generally regarded as good style to hold the lock as little as possible
1. Do setup that does not require the lock
2. Acquire the lock
3. Do the critical operation
4. Release the lock
5. Do cleanup that does not require the lock

Get In and Get Out Example
public synchronized add(String[] a) { ...}

public void foo() {
// note: multiple threads can run these setup steps
// concurrently -- all stack vars
String[] a = new String[2];
a[0] = "hello";
a[1] = "there";
add(a); // synchronized step

}

Synchronization cost
Acquiring and releasing a lock each have a moderate runtime cost
Therefore, when running on a machine with only one processor, the concurrent

code may be a little slower than the non-concurrent code, since the concurrent
code has extra acquire/release costs

Coarse vs. Fine locks
Given that synchronization itself has a cost, a design can be tuned to have just a

few broad locks (coarse grain) or many small locks (fine grain)
Fine grain allows more concurrency, but spends more time acquiring and

releasing locks
It's a tradeoff that depends on the particular problem

6

Immutable objects
An object that does not change after construction, such as String or Piece, avoids

synchronization problems for clients and implementors -- this makes the
immutable design a little more attractive in a threaded environment. It's less
work, and it is immune from various scary concurrency bugs.

Other Thread Methods
sleep() / yield()
These are static methods in the Thread class. They do not operate on the receiver

-- they operate on the current running thread.
The preferred syntax to call these is Thread.sleep() or Thread.yield(), to

emphasize that they are static.
sleep(milliseconds) blocks the current thread for the given number of

milliseconds. May throw an InterruptedException
yield() -- voluntarily give up the CPU, so that another thread may run. Just a hint

to the VM that perhaps now would be a good time to run a different thread.

Interruption
interrupt()

 Send to a thread object to signal that it should stop
Does not stop the thread right away -- the notification is "asynchronous"
The thread should notice, eventually, that it has been interrupted and exit its

run loop cleanly
isInterrupted()

Send to a thread to see if (boolean) it has been interrupted.
Typically, a worker thread object sends this message to itself in its run loop

periodically to see if it has been interrupted.
When interrupted, the worker should exit its run, leaving data structures in a

clean state.
boolean interrupted() -- similar to isInterrupted(), but clears the flag -- do not

use.
Old stop() style

Java used to feature synchronous thread methods such as stop(), but these
have been deprecated, because it is practically impossible to get the "exits
leaving the data structures in clean state" condition correct with them.

7

interruption() example
/*
 Demonstrates creating a couple worker threads, running them,
 interrupting them, and waiting for them to finish.
*/
class Thread3 {

// Subclass off Thread and override run()
static class Worker extends Thread {

public void run() {
long sum = 0;
for (int i=0; i<5000000; i++) {

sum = sum + i; // do some work

// every n iterators... check isInterrupted()
if (i%100000 == 0) {

System.out.println("Working:" + i);

if (isInterrupted()) {
// clean up, exit when interrupted
System.out.println("Interrupted");
return;

}

Thread.yield();
}

}
}

}

public static void demo() {
Worker a = new Worker();
Worker b = new Worker();

System.out.println("Starting...");
a.start();
b.start();

try {
Thread.sleep(200); // sleep a little, so they make some progress

}
catch (InterruptedException ignored) {}

System.out.println("Interrupting...");
a.interrupt();
b.interrupt();

try {
a.join();
b.join();

}
catch (Exception ignored) {}

System.out.println("All done");
}

8

/*
Starting...
Working:0
Working:100000
Working:0
Working:200000
Working:300000
Working:100000
Working:200000
Working:400000
Interrupting...
Working:500000
Interrupted
Working:300000
Interrupted
All done

*/

}

Priorities
getPriority()/setPriority()
Threads have priorities, that the scheduler uses to give more time to some

threads and less time to others.
Use priorities to optimize behavior, but not to safeguard critical sections --

priorities are not precise in that way. Use synchronization to protect critical
sections no matter what the priorities are.

There is a school of thought that priorities introduce more complexity than they
are worth in a concurrent program, and should never be used.

synchronized(obj) { ...}
Acquire/Release lock for a specific object. Code looks like...
void someOperation(Foo foo) {

int sum = 0;
synchronized(foo) { // acquire foo lock

sum += foo.value;
} // release foo lock
...

Similar to synchronized method
Uses the same lock as synchronized methods -- the lock in each object.

A little slower
A little less readable
Conclusion: synchronized methods are slightly preferable, but synchronized(obj)

gives you flexibility -- you can talk about the lock of an object other than the
receiver and in places other than the start/end of a method.

9

synchronized(obj) {...} example
/*
 Demonstrates using individual lock objects with the
 synchronized(lock) { ...} form instead of synchronizing methods --
 allows finer grain in the locking.
*/
class MultiSynch {

// one lock for the fruits
private int apple, bannana;
private Object fruitLock;

// one lock for the nums
private int[] nums;
private int numLen;
private Object numLock;

public MultiSynch() {
apple = 0;
bannana = 0;
// allocate an object just to use the lock inside it
// (could use a string or some other object just as well)
fruitLock = new Object();

nums = new int[100];
numLen = 0;
numLock = new Object();

}

public void addFruit() {
synchronized(fruitLock) {

apple++;
bannana++;

}
}

public int getFruit() {
synchronized(fruitLock) {

return(apple+bannana);
}

}

public void pushNum(int num) {
synchronized(numLock) {

nums[numLen] = num;
numLen++;

}
}

10

// Suppose we pop and return num, but if it is negative we make
// it positive -- demonstrates holding the lock for the minimum time.
public int popNum() {

int result;
synchronized(numLock) {

result = nums[numLen-1];
numLen--;

}
// do computation not holding the lock if possible
if (result<0) result = Math.abs(result);
return(result);

}

public void both() {
synchronized(fruitLock) {

synchronized(numLock) {
// some scary operation that uses both fruit and nums
// note: acquire locks in the same order everwhere to avoid
// deadlock.

}
}

}
}

