
CS193j, Stanford Handout #15
Winter, 2001-02 Nick Parlante

Drawing 4
From last time
Control listening vs. polling
Erasing fish hat example

Repaint 2
Today, we'll look at how the repaint system works in more detail.

1. Repaint -- region to draw
Repaint() tells the system that an area on screen needs to be redrawn
Repaint() is sent to a component, but the command to draw is translated to a

region -- typically the bounds of that component.
component.repaint() -- specifies the entire bounds of that component
component.repaint(<rectangle>) -- specifies a sub rectangle inside the component

2. Repaint -> Update Region
The system maintains a global "update region" -- a 2-d representation of areas

that need to be redrawn.
Repaint -> adds a region to the update region

3. System paint thread
1. Notices non-empty update region
2. Compute intersection of that region vs. components
3. Initiates draw recursion down the component nesting hierarchy. Composites

the pixels together back-to-front.

Region Based Drawing
The need to draw something is always expressed in terms of regions of pixels,

not just components.
This scheme deals with intersection and z-order correctly

Overlap
Draw all the components that intersect the pixel region that needs to be redrawn.
Draw the components from back to front.

2

Delete This
Component

Move Component -> old bounds + new
bounds -- "smart repaint"
Move a component from an old position to a new position.
What needs to be redrawn?
Both the old region and the new region -- the old region needs to be drawn with

the component not there.
Smart repaint = repaint just the needed rectangles, not the entire component

area.
The system gets this right automatically when moving components around with,

say, a JPanel. See the setBounds() source code -- repaints the old+new regions.

Coalescing
Using repaint() to make redraw requests gives us the advantage of "coalescing" --

intelligently combining multiple repaint() requests into a single draw
operation.

Time: Multiple repaint requests for a region in quick succession are "coalesced"
into one draw operation. You can repaint() 3 times in succession, but it just
draws once.

Space: repaint regions can overlap, but the area of intersection is just drawn once.

Coalescing Example - JSlider
Consider the JSlider/MyComponent example from last time
When the JSlider moves, it sends a setCount() to the widget, which does a

repaint()
Suppose we move the slider quickly -- generating three setCounts() in quick

succession, resulting to three repaint() calls.
This does not mean we need to draw the MyComponent three times. If we did,

the first two draws would just be overwritten anyway -- potentially a complete
waste.

The three repaints() can be coalesced into a single draw, if they are close enough
together in realtime.

3

Mouse Tracking
Use MouseListener MouseMotionListener to get notifications about mouse

events over a component.
The component itself is the source of the notifications -- add the listener to the

component.

Listener vs. Adapter Style
Problem

Listener has a bunch of abstract methods -- e.g. 5 in MouseListener.
You typically only care about one or two, so implementing all 5 is a bore.

Solution
"Adpater" class has empty { } definitions of all the methods
Then you only need to implement the ones you care about -- the adapter

catches the others.
Bug

If you type the prototype slightly wrong, your method will be ignored -- e.g.
MousePressed() instead of the correct mousePressed()

MouseListener Code
public interface MouseListener extends EventListener {

 /**
 * Invoked when the mouse has been clicked on a component.
 */
 public void mouseClicked(MouseEvent e);

 /**
 * Invoked when a mouse button has been pressed on a component.
 */
 public void mousePressed(MouseEvent e);

 /**
 * Invoked when a mouse button has been released on a component.
 */
 public void mouseReleased(MouseEvent e);

 /**
 * Invoked when the mouse enters a component.
 */
 public void mouseEntered(MouseEvent e);

 /**
 * Invoked when the mouse exits a component.
 */
 public void mouseExited(MouseEvent e);
}

Mouse Adapter Code
public abstract class MouseAdapter implements MouseListener {
 /**
 * Invoked when the mouse has been clicked on a component.

4

 */
 public void mouseClicked(MouseEvent e) {}

 /**
 * Invoked when a mouse button has been pressed on a component.
 */
 public void mousePressed(MouseEvent e) {}

 /**
 * Invoked when a mouse button has been released on a component.
 */
 public void mouseReleased(MouseEvent e) {}

 /**
 * Invoked when the mouse enters a component.
 */
 public void mouseEntered(MouseEvent e) {}

 /**
 * Invoked when the mouse exits a component.
 */
 public void mouseExited(MouseEvent e) {}
}

Click : MouseListener
component.addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent e) {
// called for mouse click on the component

Motion: MouseMotionListener
gesture with mouse button held down

component.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

// called as mouse is dragged, after initial click

JComponent = source
The JComponent where the click began is the "source" object for the mouse

events. Register with the component to hear about clicks on it.

Local Co-Ords
Notifications about the mouse event will use the local co-ord system of the

component where they happened. (This is similar to the way
paintComponent() works -- using the local co-ord system.)

The "delta" rule for mouse motion
Wrong: absolute

Use the current co-ords of the mouse--
Set the position of whatever it is to those co-ords

Right: relative
Get the current co-ords
Compare the last co-ords

5

Apply that delta to whatever it is
Scenario

An example of this being done wrong is a lower-right resize-knob that moves
the lower-right corner to the mouse position instead of applying the delta to
the lower-right corner. With the wrong strategy, a click-release with no
motion can still move the corner.

Draw-Clip Optimization
Suppose we have a program that does smart repainting
Therefore, when paintComponent is called, often it is really just drawing a little

area of the component. The "clip bounds" of the Graphics object will show the
area were drawing really needs to happen. The clip bounds is probably the
same rectangle that was set by the earlier smart repaint operation.

Optimization
Get the clipBounds from the Graphics object -- the little area where drawing

is actually happening
When drawing things, check to see if they intersect the clip bounds first -- if

they do not, don't draw them
Smart repaint is the most important draw optimization.
The draw-clip optimization is nice, but secondary. You can skip it and still get

good performance.
See the Dots example -- does smart repaint on dot move, and draw-clip opt in

paintComponent.

6

DotPanel Example

// DotPanel.java
/**
 The DotPanel class demonstrates a few things...

 -Mouse tracking -- clicking makes a new point, clicking
 on an existing point moves it. The data model is the collection
 of points where there is a dot on screen.

 -Smart repaint -- only repaints the needed rectangle when a dot moves

 -Draw-clip optimization -- looks at the clip bounds when drawing
*/

import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;

class DotPanel extends JPanel implements DocPanel {
private ArrayList dots; // represent each dot by its center point
public final int SIZE = 20; // diameter of one dot

// remember the last point for mouse tracking

7

private int lastX, lastY;
private Point lastPoint;

public boolean smartRepaint = true;

private boolean dirty;

/**
 Utility test-main creates a DotPanel in a window.
*/
public static void main(String[] args) {

JFrame frame = new JFrame("Dot Panel");

JComponent container = (JComponent) frame.getContentPane();

DotPanel dotPanel = new DotPanel(300, 300, null);

container.add(dotPanel);

frame.addWindowListener(
new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
}

);

frame.pack();
frame.setVisible(true);

}

/**
 Create an empty DotPanel. Load the contents of the
 given File if it is non-null.
*/
public DotPanel(int width, int height, File file) {

super();
setPreferredSize(new Dimension(width, height));
setBackground(Color.white);

dirty = false;
dots = new ArrayList();

if (file != null) {
load(file);

}

8

/*
 Mouse Strategy:
 -if the click is not on an existing dot, then make a dot
 -note where the first click is into lastX, lastY
 -then in MouseMotion: compute the delta of this position
 vs. the last
 -Use the delta to change things (not the abs coordinates)
*/

addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

//System.out.println("press:" + e.getX() + " " + e.getY());

Point point = findDot(e.getX(), e.getY());
if (point == null) { // make a dot if nothing there

point = addDot(e.getX(), e.getY());
}

// Note the starting setup to compute deltas later
lastPoint = point;
lastX = e.getX();
lastY = e.getY();

}
});

addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

//System.out.println("drag:" + e.getX() + " " + e.getY());

if (lastPoint != null) {
// compute delta from last point
int dx = e.getX()-lastX;
int dy = e.getY()-lastY;
lastX = e.getX();
lastY = e.getY();

// apply the delta to that point
moveDot(lastPoint, dx, dy);

}
}

});
}

/**
 Generates a repaint for the rect around one dot
 smart: repaint the rect just around the dot
 standard: repaint the whole panel
*/
public void repaintDot(Point point) {

if (smartRepaint) {
repaint(point.x-SIZE/2, point.y-SIZE/2, SIZE, SIZE);

}
else {

repaint();
}

}

9

/**
 Moves a dot from one place to another.
 Trick: needs to repaint both the old and new locations
 Moving components get this right automatically --
 see component.setBounds().
*/
public void moveDot(Point point, int dx, int dy) {

repaintDot(point); // repaint its old rectangle
point.x += dx;
point.y += dy;
repaintDot(point); // repaint its new rectangle

setDirty(true);
}

/**
 Private utility -- adds a dot to the data model.
*/
private Point addDot(int x, int y) {

Point point = new Point(x, y);
dots.add(point);
repaintDot(point);

setDirty(true);

return(point);
}

/**
 Finds a dot in the data model that contains
 the given point, or return null.
*/
public Point findDot(int x, int y) {

Iterator it = dots.iterator();
while (it.hasNext()) {

Point point = (Point)it.next();
int left = point.x-SIZE/2;
int top = point.y-SIZE/2;
if (left<=x && x<left+SIZE &&

top<=y && y<top+SIZE) {
return(point);

}
}
return(null);

}

10

/**
 Standard override -- draws all the dots.
*/
public void paintComponent(Graphics g) {

// As a JPanel subclass we need call super.paintComponent()
// so JPanel will draw the background for us.
super.paintComponent(g);

Iterator it = dots.iterator();

boolean CLIP_OPTIMIZE = true;

if (!CLIP_OPTIMIZE) {
// standard draw: just iterate through and draw them all.
// the performance of this is fine actually
while (it.hasNext()) {

Point point = (Point)it.next();
g.fillOval(point.x - SIZE/2, point.y-SIZE/2, SIZE, SIZE);

}
}
else {

// clip optimize draw: only draw the dots that intersect
// the current clip bounds
Rectangle clip = g.getClipBounds();
Rectangle temp = new Rectangle();

while (it.hasNext()) {
Point point = (Point)it.next();

temp.x = point.x - SIZE/2;
temp.y = point.y - SIZE/2;
temp.width = SIZE;
temp.height = SIZE;

if (clip.intersects(temp)) {
g.fillOval(temp.x, temp.y, temp.width, temp.height);

}
}

}
}

}

