
CS193j, Stanford Handout #14
Winter, 2001-02 Nick Parlante

Drawing 3

paintComponent() Features
1. Passive / System Driven
Wait for system to tell you to draw
drawRect() debugging -- put a call to g.drawRect() at the start of your

paintComponent() just to see where things are.
Do not just start drawing on your own, they way you would in a 106a program

2. Object state -> pixels, read only
Look a the state of the object, and draw the pixels that represent that state. Do not

change the state of the object.

Obect in memory -- has
assorted ivars: int, boolean
string, which collectively
define its current state. Some of
that state affects the appearance
on screen.

paintComponent()

3. Clipping
System sets a "clipping region" on the Graphics object before sending

paintComponent(). By default, the clipping region is the bounds of the
component, so the component does not draw outside its bounds.

Drawing outside the clipping region does not lay down any pixels.
System uses this to optimize the drawing in cases we will see later.
The component can be unaware of the clipping for basic uses -- e.g. g.drawRect()

automatically only changes pixels inside the clipping region.

4. float/int drawing
Suppose you want to draw 10, equally spaced vertical lines
NO:

int dh = width/10;
for (int i=0; i<10; i++) {

int x = dh*i;

2

g.drawSomething(x, ...
YES:

Do calculations with floats, convert to int only at the last step
double dh = ((double)width)/10;
for (int i=0; i<10; i++) {

int x = Math.round(dh*i);
g.drawSomething(x, ... // convert to int at the last step

5. component.getGraphics() -- NO
Almost always incorrect to use this
Only getGraphics() if the assignment handout specifically says to
getGraphics() goes against the system/paintComponent paradigm

Repaint
90% of drawing is automatic
90% of drawing is automatic, you don't do anything at all -- the system notes

these cases automatically and does the drawing...
Expose event-- something used to be covered in the "z-order" stacking of

components, but now is not
Resizing
Scrolling

We need repaint for the cases where the system does not automatically know
that the components needs to be redrawn.

component.repaint() -- draw request
Send the repaint() message to tell the system that the given component needs to

be redrawn. In other words, repaint() will cause the system to redraw the
component.

Asynchronous
Repaint() does not cause the drawing immediately.
The connection from repaint() to paintComponent() is indirect.
Repaint() simply notes that given component needs a redraw in the system's

private data structure.
A fraction of a second later, the draw thread in the system will notice that the

component needs to be drawn, and will initiate calling paintComponent()

Do Not call paintComponent()
It is almost never correct to call component.paintComponent()
Instead, call component.repaint(), and the system will schedule a

paintComponent() to happen soon

3

"Up To Date" Repaint Model
Object State

Each object in memory has lots of state : strings, pointers, booleans...
Some of that state affects the way the object appears on screen.

Relevant Change
When state that affects the appearance is changed, a repaint() is required.

Out of date
A change to the object state makes the on-screen representation out of date --

it is showing the pixels from a paintComponent() with the old state.

e.g. Repaint Setter Style
boolean angry

Suppose the smiley face has an angry boolean.
paintComponent() looks at the value of the angry ivar, and draws in red if it

is true

// smiley -- draws in red if angry
public void paintComponent(Graphics g) {

if (angry) g.setColor(Color.red);
// draw smiley

}

The setter does a repaint() since the angry state is relevant to the appearance
public void setAngry(boolean angry)
{

this.angry = angry;
repaint();

}

Better
public void setAngry(boolean angry)
{

if (this.angry != angry) {
this.angry = angry;
repaint();

}
}

Work for Client NO / Work for receiver YES
Some state is relevant to the appearance and some is not.
Do not make the client figure this out -- just hide the call to repaint() in the

appropriate setters.

Repaint Bugs
Tempting to sprinkle repaint() calls all around -- don't be careless
What if the code calls repaint() in paintComponent()?

4

More Listeners - JSlider
JSlider -- component with min/max/current int values
Listener implements StateChangeListener interface -- the notification is called

stateChanged(ChangeEvent e)
Use e.getSource() to get a pointer to the source object

final var trick
Inner classes can see ivars of outer object
Inner classes cannot see stack vars from where they are created.
However, inner classes can see "final" stack vars from where they are created --

use this to communicate the value of a stack var to the inner class.
Use "Outer.this" to refer to the this pointer of the outer object. Necessary in some

cases if the compiler cannot distinguish that a ivar should be available from the
outer object.

Repaint Example

5

// Widget.java
/*
 Stores a single number.
 Draws that number with a large font.
 Simple example of setter/repaint style.
*/
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;

public class Widget extends JComponent {
private int count;

// static: one variable shared by all instances
// aka "singleton" pattern
private static Font font = null;

public Widget(int width, int height) {
super();
setPreferredSize(new Dimension(width, height));

count = 0;
}

/*
 Typical setter -- calls repaint() to alert the
 system that we need to be redrawn.
*/
public void setCount(int newCount) {

if (newCount!=count) {
count = newCount;
repaint();

}
}

public void increment() {
setCount(count+1);

}

/*
 Draw ourselves with a big font (see the Font class).
*/
public void paintComponent(Graphics g) {

// typical "debug rect" around our bounds just to have
// something show up
g.drawRect(0, 0, getWidth()-1, getHeight()-1);

// trick: lazy evaluation of font object
if (font==null) font = new Font("DIALOG", Font.ITALIC, 96);

g.setFont(font);
g.setColor(Color.red);
g.drawString(Integer.toString(count), 4, getHeight()-4);

6

}

}

// Boxer.java
/*
 Simple component draws a number of boxes.
*/
import java.awt.*;
import javax.swing.*;
import java.util.*;

import java.awt.event.*;

class Boxer extends JComponent {
private int count; // number of boxes to draw

Boxer(int width, int height) {
super();
setPreferredSize(new Dimension(width, height));

count = 1;
}

/*
 Increases the count.
*/
public void increment() {

setCount(count+1);
}

/*
 Sets the count.
*/
public void setCount(int count) {
// note: tricky case of param and ivar with same name

if (this.count != count) {
this.count = count;
repaint();

}
}

/*
 Draws the series of 1..count rectangles
*/
public void paintComponent(Graphics g) {

//super.paintComponent(g); // not necessary

int width = getWidth();
int height = getHeight();

for (int i=0; i<count; i++) {
// note: do the running i/count computation with floats

7

// 0/10 1/10 2/10 ...
int rx = (int) ((float)width*i/(2*count));
int ry = (int) ((float)height*i/(2*count));

// 5/5 4/5 3/5...
int rWidth = (int) ((float)width*(count-i))/count;
int rHeight = (int) ((float)height*(count-i))/count;

g.drawRect(rx, ry, rWidth-1, rHeight-1);
}

g.setColor(Color.red);
g.drawString(Integer.toString(count), 20, 20);

}

}

// Repaint.java
/*
 Demonstrates a frame containing a widget and boxer with
 controls wired up to them.
*/
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;

public class Repaint extends JFrame {
private Widget widget;
private Boxer boxer;

public Repaint() {
super("Repaint");

JComponent container = (JComponent) getContentPane();

// Put in a border layout
container.setLayout(new BorderLayout());

// Put a widget in the north
widget = new Widget(100, 100);
container.add(widget, BorderLayout.NORTH);

JButton button;

// Create a vertical box, put it in the east, put controls in it
Box box = Box.createVerticalBox();
container.add(box, BorderLayout.EAST);

button = new JButton("Increment");
box.add(button);
button.addActionListener(

8

new ActionListener() {
public void actionPerformed(ActionEvent e) {

// note: we can access ivars of our "outer" object
widget.increment();

}
}

);

button = new JButton("Clear"); // note: re-using "button" var
box.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

widget.setCount(0);
}

}
);

// note: store slider as "final" variable so inner class
// can see it
final JSlider slider = new JSlider(0, 100, 0); // (min, max, current)
box.add(slider);

slider.addChangeListener(
new ChangeListener() {

public void stateChanged(ChangeEvent e) {
// note: can access final stack var "slider"
widget.setCount(slider.getValue());

}
}

);

// Create boxer in center with slider in south
final Boxer b = new Boxer(200,200);
container.add(b, BorderLayout.CENTER);

JSlider slider2 = new JSlider(0, 100, 0);
container.add(slider2, BorderLayout.SOUTH);

slider2.addChangeListener(
new ChangeListener() {

public void stateChanged(ChangeEvent e) {
// note: another way to get a pointer to the source
JSlider s = (JSlider) e.getSource();
b.setCount(s.getValue());

}
}

);

// Quit on window close
addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

}

9

);
// in 1.2 this works: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();
setVisible(true);

}

public static void main(String[] args) {
new Repaint();

}
}

Control Strategies...

1. Listener
The way we've done things so far.
Get notifications from the button, slider, etc. at the time of the change

2. Poll
Another technique -- do not listen to the control. Instead, check the control's

value at the time of your choosing
e.g. checkbox.isSelected()
Avoid having two copies of the control's state -- just use the one copy in the

control itself.
Polling does not work if you need to repaint on control change.

10

Erasing
We don't actively erase things.
To "erase" something, we just don't draw it in paintComponent(), and so it

disappears
When calling paintComponent(), the system starts with an erased canvas, and

draws the components back to front. To make something disappear -- just don't
draw it.

With hat

Without hat

Fish class...
void paintComponent() {

// draw fish body
if (hasHat) // draw the hat

}

void setHat(boolean hat) {
hasHat = hat;
repaint();

}

Scenario: fish.hasHat is true. Send fish.setHat(false) -- the hat disappears.

